首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The origin of the surface potential of calcium carbonate in aqueous dispersions and the dissolution of calcite in systems containing excess Ca(2+) and CO(3)(2-) have been the subjects of this study. In addition, stabilization of calcite particles with an anionic polyelectrolyte (sodium polyacrylate (NaPA)) and the effect on surface potential and dissolution of calcite have been studied. Preferential dissolution of either Ca(2+) or CO(3)(2-) from the surface, which is governed by the partial pressure of CO(2) in solution and the pH of the solution, mainly determines the surface potential. Both lattice ions (Ca(2+) and CO(3)(2-)) adsorb onto the surface and thus alter the surface potential. NaPA adsorbs strongly onto the calcite surface regardless of background electrolyte concentration, and reverses the surface potential to negative values. Chelation of the surface due to NaPA can be partly prevented by adding Ca(2+) to the dispersion.  相似文献   

2.
The flocculation performance of cationic starches on calcite pretreated with anionic sodium polyacrylate (NaPA) was investigated by measuring the mean particle size and the dynamic mobility of the calcite dispersions. Cationic starches of different molecular weight and degree of substitution were used. By varying the amount of anionic sodium polyacrylate, which has a strong affinity to the calcium carbonate surface, one is able to anionically modify the particles and reverse the charge character of the originally cationic calcium carbonate. By such modification of the charge character of the calcium carbonate dispersion, it is possible to approach the mechanisms of flocculation caused by cationic macromolecules like starch. The importance of different mechanisms of flocculation, such as bridging, charge neutralization, and flocculation induced by polyelectrolyte complexes (PEC), was further investigated in this work. It was found that when the NaPA is completely absorbed at the calcite surfaces the mechanism of the flocculation induced by the starch is mainly bridging flocculation. Excess NaPA in the calcium carbonate dispersion will result in polyelectrolyte complexes formed between the non-absorbed NaPA and the oppositely charged starch polymers. These complexes will in most cases strongly enhance the flocculation due to mainly charge neutralization. Depending on the ratio of non-absorbed NaPA and the starch in the aqueous phase, the calcite dispersion is either re-stabilized or more strongly flocculated due to the formed polyelectrolyte complexes. Both the mobility and the particle size measurements support the mechanisms described. It was further demonstrated that the molecular weight and degree of substitution of the starches might be adjusted to control the flocculation behavior.  相似文献   

3.
The role of stabilizing agents in the interaction between styrene/butadiene latex and calcium carbonate particles has been studied using isothermal titration calorimetry (ITC) and an electrokinetic sonic amplitude (ESA) technique. It is demonstrated that the polyacrylate sodium salt (dispersing agent, referred to as NaPA) used as stabilizing agent for the calcium carbonate suspensions principally affects the interfacial properties of the calcite surface. An electrostatic barrier is created and this decreases the attractive interactions between the latex and the negatively charged mineral surface. The total enthalpy change observed when an emulsion of styrene/butadiene particles substantially free from surfactant was added to the dispersed calcium carbonate could be described via a relatively complex path. The process included (i) an exothermic response from the association of the latex particles (adsorption process) with the dispersed calcium carbonate surface and (ii) an endothermic bulk phase effect due to the adsorption on the latex particles of dissolved species originating from the calcium carbonate. Stabilization of the latex particles with sodium dodecyl benzene sulfonate (SDBS) or a non-ionic fatty alcohol ethoxylate surfactant did not significantly change the enthalpy of interaction. It was further demonstrated that SDBS had a very weak affinity for the dispersed calcium carbonate particles and that dissolution of species, such as calcium ions, from the calcium carbonate surface, allows further adsorption of SDBS onto the latex particles.  相似文献   

4.
The zetapotential of calcite in contact with aqueous solutions of varying composition is determined for pre-equilibrated suspensions by means of electrophoretic measurements and for non-equilibrium solutions by means of streaming potential measurements. Carbonate and calcium are identified as charge determining ions. Studies of the equilibrium solutions show a shift of isoelectric point with changing CO(2) partial pressure. Changes in pH have only a weak effect in non-equilibrium solutions. The surface structure of (104)-faces of single crystal calcite in contact to solutions corresponding to those of the zetapotential investigations is determined from surface diffraction measurements. The results reveal no direct indication of calcium or carbonate inner-sphere surface species. The surface ions are found to relax only slightly from their bulk positions; the most significant relaxation is a ~4° tilt of the surface carbonate ions towards the surface. Two ordered layers of water molecules are identified, the first at 2.35±0.05? above surface calcium ions and the second layer at 3.24±0.06? above the surface associated with surface carbonate ions. A Basic-Stern surface complexation model is developed to model observed zetapotentials, while only considering outer-sphere complexes of ions other than protons and hydroxide. The Basic-Stern SCM successfully reproduces the zetapotential data and gives reasonable values for the inner Helmholtz capacitance, which are in line with the Stern layer thickness estimated from surface diffraction results.  相似文献   

5.
We explored the affinity of calcite to adsorbed organic molecules as an approach to the conservation of cultural heritage built of marble and limestone. The utilization of phenylmalonic and benzylmalonic acids provided a hydrophobic adsorptive interface, adequate to prevent processes of aqueous weathering. Samples of marble powder (polycrystalline calcite) were impregnated with solutions of phenylmalonic and benzylmalonic acid at three concentrations (5 x 10(-2), 5 x 10(-3), and 5 x 10(-4) M) and different pH values (6.00, 7.00, and 8.00). The surface charge of the calcite suspensions was determined by potentiometric measurements under equilibrium conditions at room temperature in aqueous solution of the dicarboxylic acids, in order to understand the influence of the electrokinetic potential in the surface association. The adsorbed amounts were determined by calculation of the thermodynamic equilibria of solutions. The presence of the organic interface on the mineral surface was corroborated by Raman spectroscopy and small-angle X-ray scattering (SAXS). The results indicate effective adsorption of both dicarboxylic acids as a function of the concentration and pH, and several other conditions that favors coulombic interaction, an absence of electrophoretic mobility or surface electroneutrality related to the solid surface potentials. The coverage of pores by dicarboxylic adsorbate modified the geometrical pore shape and the pore size distribution, filling all the pores of larger than 80 A diameter, giving as a result a mesoporous structure. This change in the surface morphology by organic adsorbates constitutes a modification in the diffusional processes of the environment on the mineral surface.  相似文献   

6.
The rates of dissolution of calcitic Carrara marble have been reported to be significantly reduced in alkaline pH (pH 8.25) at 25 degrees C in the presence of (1-hydroxyethylidene)-1,1 diphosphonic acid (HEDP). The adsorption takes place at the calcite/water interface at the double layer through the interaction of charged surface species with the charged solution species of the adsorbate. The present work focused on obtaining a better understanding of the interaction of the calcite surface with HEDP. Calculations were performed according to the triple layer model, assuming the formation of surface complexes between the charged surface species of calcite and the species of HEDP dominant at pH 8.25. According to the model, the adsorbed species are located at the inner Helmholtz plane of the electrical double layer. Strong lateral interactions between the adsorbed species were suggested and were corroborated from the calculation of the respective energy, which was equal to 69 kJ mol(-1). The adsorption isotherm was consistent with the proposed model at low surface coverage values, while discrepancies between the values experimentally measured and the predicted were found at higher adsorbate concentrations. The deviations from the predicted values were attributed to the fact that HEDP adsorption on calcite resulted in the formation of multiple layers. The model explained adequately the changes in the zeta-potential values of calcite in the presence of HEDP in the solution which resulted in charge reversal upon adsorption.  相似文献   

7.
Aqueous suspensions of cellulose nanocrystals (NCC) produced by sulfuric acid hydrolysis of natural cellulose fibres display a number of unique properties. In addition to forming equilibrium chiral nematic phases above some critical concentration, cellulose nanocrystal suspensions tend to gel or aggregate if the stability of the suspension decreases, for example because of a decrease in the surface charge density of sulfate ester groups, or a change in the properties of the suspending medium. Direct incorporation of unmodified nanocrystals into organic media usually leads to aggregation. We have found that it is possible to circumvent this difficulty and form clear thixotropic gels of unmodified NCC in glycerol, by careful evaporation of water from aqueous glycerol suspensions of NCC. The physical gels form at a fairly low (<3 wt%) concentrations of cellulose. The initial composition of the suspension, the temperature and rate of evaporation, and the time resting at room temperature all influence the formation of thixotropic gels. Desulfation of the acid-form nanocrystals, enhanced in the glycerol-rich suspensions, is shown to be a key step in this gelation process.  相似文献   

8.
The rate of dissolution of surface-treated calcite crystals in aqueous acidic solution has been studied using an adaptation of the channel flow cell method with microdisc electrode detection. Surface treatments of calcite with sulfuric acid lead to the nucleation of gypsum overgrowths, which reduce the rate of dissolution of calcite. Rate constants for untreated calcite and calcite pretreated with sulfuric acid conditions of 0.01 M for 1 h, 0.05 M for 5 h, and 0.1 M for 21 h are found to be 0.035, 0.018, 0.006, and 0.004 cm s(-1), respectively. Deterioration of calcite materials caused by acid deposition was investigated by field exposure of untreated and sulfate pretreated calcite rocks under urban conditions for 12 months. The rate constant for both pretreated and untreated calcite exposed to weathering is 0.003 cm s(-1). This suggests that calcite self-passivates the surface from further reaction when exposed to acid deposition. However, surface studies indicate that the surface undergoes erosion and dissolution before passivation. Pretreatment of the surface with sulfate protects the surface from acid deposition so it remains less reactive toward acid compared with untreated calcite. Copyright 2001 Academic Press.  相似文献   

9.
The aim of this study was to compare different types of dolomites through batch reactivity experiments between HCl and dolomite powders, and ex‐situ characterisation of the particles before and after dissolution. Sedimentary dolomites were observed to have higher initial reactivities than metamorphic ones with sufficiently low calcite concentrations (<6% according to our regression model). In addition, the initial reactivities of the metamorphic dolomites were dependent on calcite concentration and could exceed those of the sedimentary dolomites. A regression model is presented for the dependence of initial reactivity on mineral composition and type of origin (sedimentary/metamorphic). The samples with the highest initial reactivities had also the largest BET (Brunauer, Emmet, Teller) surface areas obtained with nitrogen physisorption. Yet our data indicates that mineral composition of the dolomite has a greater influence on the initial reactivity than the BET surface area. Furthermore, it was found that the surface of sedimentary dolomites, unlike the surface of metamorphic dolomites, becomes porous during dissolution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Reactions of Al(III) at the interface between SiO2(s) and aqueous solution were characteristically and quantitatively studied using electrophoretic methods and applying a surface complexation/precipitation model (SCM/SPM). The surface and bulk properties of Al(III)/SiO2 suspensions were determined as functions of pH and initial Al(III) concentration. Simulated modeling results indicate that the SCM, accounting for the adsorption mechanism, predicts sorption data for low surface coverage only reasonably well. Al(III) hydrolysis and surface hydroxide precipitation must be invoked as the Al(III) concentration and/or pH progressively increase. Accordingly, the three processes in the Al(III) sorption continuum, from adsorption through hydrolysis to surface precipitation, could be identified by the divergence between the SCM/SPM predictions and the experimental data. SiO2(s) suspensions with low Al(III) concentrations (1 x 10(-4) and 1 x 10(-5) M) exhibit electrophoretic behavior similar to that of a pure SiO2(s) system. In Al(III)/SiO2 systems with high Al concentrations of 1 x 10(-3), 5 x 10(-3) and 1 x 10(-2) M, three charge reversals (CR) are observed, separately representing, in order of increasing pH, the point of zero charge (PZC) on the SiO2 substrate (CR1), the onset of the surface precipitation of Al hydroxide (CR2), and at a high pH, the PZC of the Al(OH)3 coating (CR3). Furthermore, in the 1 x 10(-3) M Al(III)/SiO2(s) system, CR2 is consistent with the modeling results of SCM/SPM and provides evidence that Al(III) forms a surface precipitate on SiO2(s) at pH above 4. SiO2(s) dissolution was slightly inhibited when Al(III) was adsorbed onto the surface of SiO2(s), as compared to the dissolution that occurs in a pure SiO2(s) suspension system. Al hydroxide surface precipitation dramatically reduced the dissolution of SiO2(s) because the Al hydroxide passive film inhibited the corrosion of the SiO2(s) surface by OH- ions.  相似文献   

11.
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the structures formed during the adsorption of sodium polyacrylate (NaPA) on charged TiO2 particles and to determine the subsequent interaction of the adsorbed polymer structure with cationic and anionic surfactants. The nature of the polymer structure was deduced from the adsorbed amount in tandem with the information obtained from monitoring the change in the relative intensity of the COO- and COOH infrared bands. In particular, it is found that the relative number of COO- and COOH groups on the polymer backbone for the adsorbed state differs from that of the same polymer in solution. This difference is due to a shift in the population of COO-/COOH groups on the polymer backbone that arises when the COO- groups bind to positively charged sites on the surface. A change in the number COO-/COOH groups on the polymer is thus related to a change in the bound fraction of polymer. It is shown that the initial NaPA approaching the bare surface adopts a flat conformation with high bound fraction. Once the bare sites on the surface are covered, the accommodation of additional polymer on the surface requires the existing adsorbed layer to adopt a conformation with a lower bound fraction. When the adsorbed NaPA is probed with a solution containing the anionic surfactant sodium dodecyl sulfate (SDS), the SDS competes for surface sites and displaces some of the bound NaPA segments from the surface, giving rise to an polymer layer adsorbed with an even lower bound fraction. In contrast, addition of a solution containing the cationic surfactant cetyltrimethylammonium bromide (CTAB) results in the binding of the surfactant directly to the free COO- sites on the adsorbed polymer backbone. Confirmation of a direct interaction of the CTAB headgroup with the free COO- groups of the polymer is provided by intensity changes in the headgroup IR bands of the CTAB.  相似文献   

12.
Adsorption of atrazine on soils: model study   总被引:1,自引:0,他引:1  
The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8相似文献   

13.
Electrically enhanced dewatering has been characterised from first principles using model kaolinite suspensions in both the coagulated and dispersed state and sludge from a potable water treatment plant. The dewatering properties, namely the compressive yield stress or extent of dewatering (quantified as the applied pressure at an equilibrium solids concentration) and the hindered settling function or the resistance of fluid flow (quantified as the rate of fluid expression at an equilibrium solids concentration), have been measured as a function of electric field strength. For both the dispersed and coagulated kaolinite suspensions, the rate of dewatering was found to improve at all applied pressures and with increasing applied electrical field strength, up to 1250 V m−1. Improvements in the extent of dewatering were also observed but only for the coagulated suspension. The greatest improvements in dewatering were observed at the lowest applied pressures. Improvement in suspension compressibility is only predicted for the specific case where the feed to the process is both coagulated and at a neutral or low pH. For the potable water sludge, improvements in the rate of dewatering were observed at all pressures above 10 kPa. At lower pressures, the low particle surface charge caused a slow onset of electro-osmotic effects. In general, the results indicate that the application of an electric field in situ during dewatering primarily helps to increase the rate of dewatering and the benefit of this methodology is predicted to be for suspensions that exhibit low permeability at low solids concentrations in applications where the pressure is low or the process is gravity driven.  相似文献   

14.
Carbonates are the predominating species in natural chemical processes. Thus, understanding the reactions that occur on their surfaces is very important. The aim of this study was to determine the influence of carbonates on the surface charge of a natural soil sample. First, surface properties of a synthesized calcite were determined using a simplified surface speciation model correlated to potentiometric titrations, and then intrinsic acidity constants and pH(znpc) (pH where protonic surface charge is equal to 0) were studied for solids with different percentages of calcite. A strong influence on surface properties of the solids was evidenced even for small additional quantities of calcite.  相似文献   

15.
Samples of polycrystalline calcite were impregnated with solutions of malonic acid of three concentrations (5 x 10(-2), 5 x 10(-3) , and 5 x 10(-4) M) and different pH values (6.00, 7.00, and 8.00). The impregnation was carried out at room temperature to evaluate the adsorption of malonate ion in the calcite surface to optimize the conditions for possible application on limestone and marble in cultural heritage materials. The affinity of the malonate ion was determined through the potentiometric measurement of the surface charge and the corresponding adsorbed amounts by titration, Raman spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate effective adsorption of the malonate ion on the surface at a pH value close to the point of zero charge (pHpzc approximately 8.20) and changes in some surface morphological properties such as the pore shape and the pore size distribution. The presence of a malonate adsorptive layer on calcite generates an interface interaction potential that may influence the reaction and transport mechanisms within the medium.  相似文献   

16.
Electrophoretic deposition of calcium phosphates from non-aqueous media   总被引:2,自引:0,他引:2  
Electrophoretic deposition of ultrafine calcium phosphates from non-aqueous suspensions onto metallic substrates was attempted in order to obtain coatings with varying porosities. Aging effects were studied by measuring changes in the electrophoretic deposition behavior of the calcium phosphate particles in the non-aqueous suspensions. It was observed that the surfaces of the calcium phosphates develop significant electrostatic charge during aging in order to enable the formation of a dense and uniform deposit. The addition of surface charge conditioners such as HCl was found to have a similar effect. Dispersion conditions were varied to obtain coatings of the desired green densities, which were sintered to different microporosities.  相似文献   

17.
A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles.  相似文献   

18.
19.
Based on the classical DLVO (Derjaguin–Landau–Verwey–Overbeek) theory, the maximum coagulation of fine particle suspensions would be predicated to occur at the point of zero charge (pzc) of the particles. Although this prediction has been fairly accurate for isotropic particles, the mismatch has been frequently reported for suspensions of anisotropically-charged or charge-mosaic particles, such as talc. Followed by successful preparation of sufficiently smooth talc edge surfaces using the ultramicrotome method for the colloidal force measurements using atomic force microscope (AFM), the anisotropic surface charge properties, i.e., surface charge characteristics of basal planes and edge surfaces of talc at different pH values were determined by fitting the measured force profiles between the AFM tip and both basal plane and edge surfaces to the DLVO theory. The talc basal planes were found to carry a permanent negative charge, while the charge on its edge surfaces was highly pH-dependent. The AFM-derived surface (Stern) potential values of talc basal planes and edge surfaces enable us to calculate the interaction energy for various associations between different charge-mosaic surfaces. The attractive interaction between talc basal planes and edge surfaces was found to dominate the rheological behavior. This study clearly demonstrates the necessity of determining anisotropic surface charge characteristics to improve the understanding of rheological properties and hence to better control their process performance.  相似文献   

20.
The present work addresses the protolytic charge of montmorillonite, which occurs on the broken-bond sites at the particle edges. The purpose is to overcome the general difficulty arising in potentiometric titration due to coupled side reactions, which severely impede the titrant budget (partial dissolution of the clay and of secondary phases, hydrolysis and readsorption of dissolved species, cation exchange). Batch potentiometric titrations were carried out on the montmorillonite fractions extracted from two bentonites (MX80 and SWy2) to quantify their protolytic charge. The effects of equilibration time (24 h and 7 days), pH from 4 to 10, and ionic strength (0.1 and 0.01 mol L(-1)) were extensively studied for the MX80 sample. Quantification of dissolution was achieved by analysis of the equilibrium solutions for dissolved species and by La(3+) exchange of the readsorbed species. The results clearly show that secondary phases such as iron- or silica-rich minerals contribute to the dissolved species, according to the nature of the raw bentonite. Furthermore, readsorption affects significant amounts of dissolved species. The overconsumption of proton/hydroxide due to dissolution, readsorption, and hydrolysis of dissolved species was evaluated using a self-consistent thermodynamic calculation. The ability of such calculation to correct the raw titration curves in order to extract the titrable surface charge of montmorillonite was evaluated by comparison with the continuous titration procedure. Especially in the alkaline domain, correcting the raw batch titration curves for the measured side reactions failed to reproduce the continuous titration curves. These observations demonstrate the limitations of the batch titration method and the superiority of fast, continuous methods for quantifying the dissociable surface charge of clays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号