首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The results of an experimental study on droplet impactions in the flow of a gas-sheared liquid film are presented. In contrast to most similar studies, the impacting droplets were entrained from film surface by the gas stream. The measurements provide film thickness data, resolved in both longitudinal and transverse coordinates and in time together with the images of droplets above the interface and images of gas bubbles entrapped by liquid film. The parameters of impacting droplets were measured together with the local liquid film thickness. Two main scenarios of droplet-film interaction, based on type of film perturbation, are identified; the parameter identifying which scenario occurs is identified as the angle of impingement. At large angles an asymmetric crater appears on film surface; at shallow angles a long, narrow furrow appears. The most significant difference between the two scenarios is related to possible impact outcome: craters may lead to creation secondary droplets, whereas furrows are accompanied by entrapment of gas bubbles into the liquid film. In addition, occurrence of partial survival of impacting droplet is reported.  相似文献   

2.
Measurement of liquid film thickness using a laser light absorption method   总被引:1,自引:0,他引:1  
A photometric technique for film thickness measurements is described in this paper. It is based on the absorption of light passing through a layer of dyed liquid and takes advantage of small sized diode laser sources and sensitive light sensors. The method is non-intrusive, easy to use and to calibrate and can be implemented at relatively low cost. Laboratory tests of the technique have yielded satisfactory accuracy and repeatability. Moreover, the technique allows measurements with a good spatial resolution. Flowing film thickness measurements made photometrically are compared directly to measurements taken simultaneously with a “parallel wire conductance probe”. Time-averaged film heights, RMS values and other statistical information have been obtained by analyzing these instantaneous film thickness records. With regard to the time-averaged values of liquid film thickness, there is a satisfactory agreement between the two measuring techniques. Received: 11 February 1999/Accepted: 30 May 1999  相似文献   

3.
An experimental investigation of thermocapillary deformations in a film of 10% ethyl alcohol solution in water, flowing down a plate with a heater of length 6.7 mm and width 68 mm, is performed. Heating of the film results in the formation of a horizontal liquid bump at the top edge of the heater. On the heater the flow divides into vertical rivulets with a thin film between them. Film deformations in the bump and the thin film between the rivulets are investigated. Local film thickness is measured by means of a double-fiber optical probe. The method is based on the dependence of the intensity of reflected light on the distance between the probe and the reflecting surface. The measurement results are compared to those previously obtained using the schlieren method. The experiment is controlled by three parameters. They are, with their respective values, the plate inclination angle (4–90°), the Reynolds number (0.15–62) and the heat flux density (0–4.5 W/cm2).  相似文献   

4.
Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.0 lpm and 15.0 lpm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (downstream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.  相似文献   

5.
The light totally reflected at the interface between a glass prism and a liquid (water) of lower index can be partly transmitted as a droplet of liquid of larger index (oil) approaches this interface. By using the variation of the reflected intensity, one can study the static structure and the thickness variation of the intermediate water film in a range of thickness of a few 10 Å to 102 Å. A preliminary experiment is presented together with the optical technique.  相似文献   

6.
In micro channels, slug flow becomes one of the main flow regimes due to strong surface tension. In micro channel slug flow, elongated bubble flows with the thin liquid film confined between the bubble and the channel wall. Liquid film thickness is an important parameter in many applications, e.g., micro heat exchanger, micro reactor, coating process etc. In the present study, liquid film thickness in micro square channels is measured locally and instantaneously with the confocal method. Square channels with hydraulic diameter of Dh = 0.3, 0.5 and 1.0 mm are used. In order to investigate the effect of inertial force on the liquid film thickness, three working fluids, ethanol, water and FC-40 are used. At small capillary numbers, liquid film at the channel center becomes very thin and the bubble interface is not axisymmetric. However, as capillary number increases, bubble interface becomes axisymmetric. Transition from non-axisymmetric to axisymmetric flow pattern starts from lower capillary number as Reynolds number increases. An empirical correlation for predicting axisymmetric bubble radius based on capillary number and Weber number is proposed from the present experimental data.  相似文献   

7.
Three-dimensional flow behavior of thin liquid film that is shear-driven by turbulent air flow in a duct is measured and simulated. Its film thickness and width are reported as a function of air velocity, liquid flow rate, surface tension coefficient, and wall contact angle. The numerical component of this study is aimed at exploring and assessing the suitability of utilizing the FLUENT-CFD code and its existing components, i.e. Volume of Fluid model (VOF) along with selected turbulence model, for simulating the behavior of 3D shear-driven liquid film flow, through a comparison with measured results. The thickness and width of the shear-driven liquid film are measured using an interferometric technique that makes use of the phase shift between the reflections of incident light from the top and bottom surfaces of the thin liquid film. Such measurements are quite challenging due to the dynamic interfacial instabilities that develop in this flow. The results reveal that higher air flow velocity decreases the liquid film thickness but increases its width, while higher liquid flow rate increases both its thickness and width. Simulated results provide good estimates of the measured values, and reveal the need for considering a dynamic rather than a static wall contact angle in the model for improving the comparison with measured values.  相似文献   

8.
When a drop of insoluble surfactant is deposited on the surface of a thin liquid film, a radial flow is induced by the resulting surface tension gradient. It is difficult in practice to measure or visualize the evolution of the surfactant concentration and the corresponding surface tension field. In this contribution, we propose a numerical technique which allows, in theory, the reconstruction of the surfactant concentration and surface tension fields from the knowledge of the free surface velocity. The method also requires the knowledge of the equation of state relating the surfactant concentration to the surface tension. The proposed method is based on a reformulation of the lubrication approximation which then takes as an input the free surface velocity field. As a by-product, the film thickness is also reconstructed. We also show in this contribution, that the surface diffusion coefficient can also be estimated, in principle. The methodologies are successfully tested on ideal, synthetic data-sets but also on under-resolved, noisy, data-sets more representative of true experimental conditions. This contribution may help shed some light on the phenomena involved in surfactant transport.  相似文献   

9.
A non-intrusive optical technique was developed to provide time-resolved longitudinal and cross-sectional images of the liquid film in horizontal annular pipe flow of air and water, revealing the interfacial wave behavior. Quantitative information on the liquid film dynamics was extracted from the time-resolved images. The planar laser-induced fluorescence technique was utilized to allow for optical separation of the light emitted by the film from that scattered by the air–water interface. The visualization test section was fabricated from a tube presenting nearly the same refractive index as water, which allowed the visualization of the liquid film at regions very close to the pipe wall. Longitudinal images of the liquid film were captured using a high-frame-rate digital video camera synchronized with a high-repetition-rate laser. An image processing algorithm was developed to automatically detect the position of the air–water interface in each image frame. The thickness of the liquid film was measured at two axial stations in each processed image frame, providing time history records of the film thickness at two different positions. Wave frequency information was obtained by analyzing the time-dependent signals of film thickness for each of the two axial positions recorded. Wave velocities were measured by cross-correlating the amplitude signals from the two axial positions. For the film cross-section observations, two high-speed digital video cameras were used in a stereoscopic arrangement. Comparisons with results from different techniques available in literature indicate that the technique developed presents equivalent accuracy in measuring the liquid film properties. Time-resolved images of longitudinal and cross-section views of the film were recorded, which constitute valuable information provided by the technique implemented.  相似文献   

10.
为了探究气流剪切作用对航空燃油在气动雾化喷嘴预膜板上流动形态的影响,首先对基于相场理论的两相流格子Boltzmann模型进行修正,并通过经典算例验证了修正后模型的准确性和可靠性.随后利用该模型模拟了同向气流驱动下液膜在水平预膜板表面上的流动,分析了气流速度对液膜流动形态的影响规律.研究表明,该模型可准确追踪具有大密度比...  相似文献   

11.
The development of stationary patterns on a thin polymer surface subject to an electric field is studied by means of the hexagonal-planform weakly nonlinear stability analysis and numerical simulations.The time evolution of the interface between the air and the polymer film on the unbounded spatial domain is described by a thin film equation,incorporating the electric driving force and the surface diffusion.The nonlinear interfacial growth includes the amplitude equations and superposition of one-dimensional structures at regular orientations.The pattern selection is driven by the subcritical instability mechanism in which the relative thickness of the polymer film plays a critical role.  相似文献   

12.
Prediction methods for two-phase annular flow require accurate knowledge of the velocity profile within the liquid film flowing at its perimeter as the gradients within this film influence to a large extent the overall transport processes within the entire channel. This film, however, is quite thin and variable and traditional velocimetry methods have met with only very limited success in providing velocity data. The present work describes the application of Particle Image Velocimetry (PIV) to the measurement of velocity fields in the annular liquid flow. Because the liquid is constrained to distances on the order of a millimeter or less, the technique employed here borrows strategies from micro-PIV, but micro-PIV studies do not typically encounter the challenges presented by annular flow, including very large velocity gradients, a free surface that varies in position from moment to moment, the presence of droplet impacts and the passage of waves that can be 10 times the average thickness of the base film. This technique combines the seeding and imaging typical to micro-PIV with a unique lighting and image processing approach to deal with the challenges of a continuously varying liquid film thickness and interface. Mean velocity data are presented for air–water in two-phase co-current upward flow in a rectangular duct, which are the first detailed velocity profiles obtained within the liquid film of upward vertical annular flow to the authors’ knowledge. The velocity data presented here do not distinguish between data from waves and data from the base film. The resulting velocity profiles are compared with the classical Law of the Wall turbulent boundary layer model and found to require a decreased turbulent diffusivity for the model to predict well. These results agree with hypotheses previously presented in the literature.  相似文献   

13.
The effects of insoluble and soluble surfactant on the motion of a long bubble propagating through a capillary tube are investigated computationally using a finite-difference/front-tracking method. Emphasis is placed on the effects of surfactant on the liquid film thickness between the bubble and the tube wall. The numerical method is designed to solve the evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier–Stokes equations. A non-linear equation of state is used to relate surface tension coefficient to surfactant concentration at the interface. Computations are first performed for soluble cases and then repeated for the corresponding clean and insoluble cases for a wide range of governing non-dimensional parameters in order to investigate the effects of surfactant and surfactant solubility. The computed film thickness for the clean case is found to be in a good agreement with Taylor’s law indicating the accuracy of the numerical method. We found that both the insoluble and soluble surfactant generally have a thickening effect on the film thickness, which is especially pronounced at low capillary numbers. This thickening effect strengthens with increasing sensitivity of surface tension to interfacial surfactant coverage mainly due to the enhanced Marangoni stresses along the liquid film. It is also observed that film thickening shows a non-monotonic behavior for variations in Peclet number. The validity of insoluble surfactant assumption is assessed for various non-dimensional numbers and it is demonstrated that insoluble assumption is valid only when capillary number is very low, i.e., Ca  1 and when surface tension is highly sensitive to interfacial surfactant coverage, i.e., the elasticity number is large.  相似文献   

14.
We have recently shown that the capillarity-based process for self-assembling particle monolayers on fluid–liquid interfaces can be improved by applying an electric field in the direction normal to the interface. In this paper, we present a technique for freezing these monolayers onto the surface of a flexible thin film. The technique involves assembling the monolayer on the interface between a UV-curable resin and a fluid which can be air or another liquid, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.  相似文献   

15.
Subcooled forced convection film boiling on a flat plate has been analysed by means of an integral method. Following the two phase boundary layer theory, the momentum and energy equations for both liquid and vapor layers are considered along with the compatibility conditions on the liquid-vapor interface. Subsequently, the governing equations are reduced to a set of algebraic equations which can readily be solved for given parameters. Comparison of the present solution with the Cess and Sparrow solution reveals an excellent performance of the present solution procedure. The effects of superheating, subcooling and liquid Prandtl number on the hydrodynamic and heat transfer characteristics are fully discussed. Furthermore, the asymptotic formulas are derived for the local Nusselt number and skin friction coefficient through a careful examination of the physical limiting conditions.  相似文献   

16.
The isothermal single-component multi-phase lattice Boltzmann method(LBM) combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.The entire process of the liquid film rupture can be divided into two stages.In Stage 1,the particle contacts with the liquid film and moves into it due to the interfacial force and finally penetrates the liquid film.Then in Stage 2,the upper and lower liquid surfaces of the thin fi...  相似文献   

17.
We present a study of the damping of capillary-gravity waves in water containing pigments. The practical interest comes from a recent profilometry technique (FTP for Fourier Transform Profilometry) using fringe projection onto the liquid-free surface. This experimental technique requires diffusive reflection of light on the liquid surface, which is usually achieved by adding white pigments. It is shown that the use of most paint pigments causes a large enhancement of the damping of the waves. Indeed, these paints contain surfactants which are easily adsorbed at the air–water interface. The resulting surface film changes the attenuation properties because of the resonance-type damping between capillary-gravity waves and Marangoni waves. We study the physicochemical properties of coloring pigments, showing that particles of the anatase (TiO2) pigment make the water surface light diffusive while avoiding any surface film effects. The use of the chosen particles allows to perform space-time resolved FTP measurements on capillary-gravity waves, in a liquid with the damping properties of pure water.  相似文献   

18.
Waves propagating along the interface between a thin vapor film and a liquid layer in the presence of a heat flux are investigated. The boundary conditions on the vapor-liquid phase surface take into account the temperature dependence of the pressure and the possibilities of formation of the metastable state of the superheated liquid and mass flow. Variations in the saturation pressure as functions of the temperature and mass flux lead to generation of weakly damped periodic waves of low amplitude whose velocity can be much higher than the velocity of the gravity waves. The waves ensure stability of the vapor film beneath the liquid layer in the gravity field. The finite-amplitude waves on the surface of the vapor film differ from the Stokes surface waves on the free surface of isothermal fluid. Instability regimes related with superheating of the liquid ant its explosive boiling when the amplitude of an initially small wave increases to infinity in a finite time can develop in a certain working-parameter regime.  相似文献   

19.
The area-averaged two-fluid model formulation of a separated two-phase flow system is used to investigate interfacial stability of liquid film flows. The analysis takes into account the effects of phase change at the interface as well as the dynamic effects of the adjacent vapor flow on the interfacial stability. Wave formation and instability criteria are established in terms of the generalized fluid and flow parameters. The criteria are applied to investigate the stability of laminar liquid film flow with interfacial shear and phase change. The influence of various dimensionless parameters characterizing film thickness, gravity, phase change and interfacial shear are studied with respect to the neutral stability, temporal growth factor and the wave propagation velocity. The results of the present study indicate that the interfacial stability analysis developed within the frame of the two-fluid model formulation proves to be quite accurate as judged by comparing its results with the available experimental data and with the results of much longer and more complex analytical investigations which are valid only for the liquid film free of interfacial shear.  相似文献   

20.
Formulas are established for calculating the influx of a substance to the surface of a liquid film on a particle in a laminar flow of an incompressible liquid with small Reynolds numbers. It is assumed that there is complete absorption of the diffusing substance at the surface of the film. An expression derived in [1] is used to solve the problem of the field of the flow velocities. The results obtained generalize expressions for the influx of substance to a drop found in [2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号