首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new laser medium – Yb,Tm:KY(WO4)2 – for diode pumped solid state laser applications operating around 1.9 to 2.0 μm has been investigated and the main laser characteristics are presented. Diode pumping at 981 nm and around 805 nm was realised. For 981-nm pumping, the excitation occurs into Yb3+ ions followed by an energy transfer to Tm3+ions. A slope efficiency of 19% was realised. For pumping around 805 nm, the excitation occurs directly into the Tm3+ ions. Here a maximum slope efficiency of 52%, an optical efficiency of 40%, and output powers of more than 1 W were realised. Using a birefringent quartz plate as an intracavity tuning element, the tunability of the Yb,Tm:KY(WO4)2 laser in the spectral range of 1.85–2.0 μm has been demonstrated. The possibility of laser operation in a microchip cavity configuration for this material has also been shown. Received: 12 March 2002 / Revised version: 20 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-531/592-4116, E-mail: stefan.kueck@ptb.de  相似文献   

2.
Room-temperature cw laser operation on the 3 F 4?3 H 6 transition at 1.85 μm of Tm3+ ions in a KY3F10 single crystal is reported here for the first time. Using a cw Ti:sapphire laser as a pump source, a threshold absorbed pump power of 120 mW and a laser slope efficiency of 42.5% were achieved by using a 45% transmissive output coupler. Optimization of the activator concentration and crystal length is discussed taking into account self-quenching and pump-absorption efficiencies as well as parasitic and intrinsic reabsorption losses. The emission cross-section at the laser wavelength is determined using different methods, showing that the result of the J–O approach is, in this case, very uncertain. Received: 2 January 2001 / Revised version: 7 February 2001 / Published online: 27 April 2001  相似文献   

3.
We report on the first diode-pumped laser operation of thulium-doped Lu2O3. With a very compact setup an output power of 75?W and slope efficiencies of around 40% with respect to the incident pump power were achieved at room temperature. Free running laser operation was observed at wavelengths of 2065?nm and 1965?nm. With a birefringent filter the wavelength could continuously be tuned from 1922?nm to 2134?nm. The thermal conductivity of Tm:Lu2O3 was measured for different dopant concentrations and is compared to the one of thulium-doped YAG.  相似文献   

4.
Passive mode-locking of a diode-pumped Nd:BaY2F8 (Nd:BaYF) was achieved on four lines in the range 1040–1074 nm, employing a semiconductor saturable absorber mirror (SAM). Nearly Fourier-limited pulses with durations of 2.6 to 7.2 ps and output power ≈50 mW were generated in a dispersion-controlled resonator using a single prism for wavelength selection, tuning and dispersion management.  相似文献   

5.
Output beams from three independently frequency-stabilized thulium master-oscillator power-amplifier fiber laser systems were spectrally combined using a plane-ruled metal diffraction grating. Two laser channels were frequency-stabilized with guided mode resonance filters and the third was stabilized using a plane-ruled metal diffraction grating. The systems had output wavelengths between 1984 and 2015 nm, each with a spectral width of 100-450 pm and output powers between 40-120 W. The combined beam had powers up to 49 W and was 32% efficient with respect to the launched pump power.  相似文献   

6.
We demonstrated a femtosecond mode-locked Er:Zr F4-Ba F2-La F3-Al F3-Na F(Er:ZBLAN)fiber laser at 2.8μm based on the nonlinear polarization rotation technique.The laser generated an average output power of 317 m W with a repetition rate of 107 MHz and pulse duration as short as 131 fs.To the best of our knowledge,this is the shortest pulse generated directly from a mid-infrared mode-locked Er:ZBLAN fiber laser to date.Numerical simulation and experimental results confirm that reducing the gain fiber length is an effective way to shorten the mode-locked pulse duration in the Er:ZBLAN fiber laser.The work takes an important step towards sub-100-fs mid-infrared pulse generation from mode-locked Er:ZBLAN fiber lasers.  相似文献   

7.
A Tm–Ho codoped fiber amplifier system is built. And, amplification of a gain-switched Tm–Ho codoped fiber laser is investigated. Average output of 300 mW is obtained at repetition rate of tens of kHz with an amplification gain bigger than 11 dB. And, pulse amplification efficiency of resonantly pumped Tm–Ho codoped single clad fiber is comparable with 793 nm pumped Tm-doped double clad fiber. The maximal pulse energy generated is about 13.1 μJ, corresponding to a peak power of 282 W at 20 kHz. During the amplification process, gain-switching, partially modulated gain-switched mode-locking and 100% modulated gain-switched mode-locking are observed sequentially. At gain-switching mode, the laser output enjoys a narrow linewidth of 0.31 nm, while at gain-switched mode-locking mode, the spectral linewidth broadens to 0.6 nm.  相似文献   

8.
The scattering effect of Tm:YAG ceramic has been investigated and the scattering coefficient at 1064 nm wavelength is measured to be 0.014 cm−1. Furthermore, a high power Tm:YAG ceramic laser with a slope efficiency of 10.7% has been built, which is end-pumped at a central wavelength of 805 nm. The 2-μm maximum output power is 7.1 W with an optical-optical conversion efficiency of 7.2%.  相似文献   

9.
10.
Room temperature operation of a c-cut microchip Tm,Ho:Lu2SiO5 laser end-pumping by a fibercoupled laser-diode is reported. A 4.03 W incident pump power is used to generate a maximum laser output of 98 mW, representing 2.43% optical-to-optical conversion efficiency and a 4.38% slope efficiency corresponding to incident power. In the experiment, the oscillating wavelengths shifting from 2.084 to 2.089 μm has been observed and approximately 10 mW single 2.087 μm wavelength oscillation has been obtained by changing the pump power to 1.43 W and the position of the pump focus.  相似文献   

11.
A wavelength tunable all fibre laser which utilizes Tm3+-doped fluoride fibre as a gain mechanism emitting around a wavelength of = 2.3 m is reported. Tm3+-doped fluoride fibre was coupled to a fibre Bragg grating inscribed in silica. This laser was evaluated by employing it as a wavelength tunable source in a methane gas optical sensor. A minimum gas detectivity of 100 ppm m limited by the ability to prepare low concentrations of gases was achieved. Emission wavelength control was implemented by thermally tuning the grating, although this method may prove to be too slow and cumbersome for practical use. A model describing the coupling between the silica fibre Bragg grating and the Tm3+-doped fibre was developed and integrated with a fibre laser model. This theoretical framework was used to examine the optimum silica and fluoride fibre parameters to achieve the maximum coupling between the fibres, with the aim of further reducing the fibre laser threshold.  相似文献   

12.
A study is made of a diode pumped Er3+:YSGG laser crystal operating at 2.797 μm. Lasers were constructed in the bounce geometry, using a transversely cooled 50 at.% Er:YSGG slab and a face-cooled 38 at.% Er:YSGG slab. Results from these are compared with those from a 50 at.% Er3+:YAG laser, also in the bounce geometry. With quasi-continuous wave diode pumping, free-running pulse energies of up to ~55 mJ and a slope efficiency of 20.5% are obtained from 50 at.% Er:YSGG. Better thermal performance is obtained from the face-cooled 38 at.% Er:YSGG slab, allowing average power of ~2 W to be obtained at a repetition rate and pump pulse duration of 140 Hz and 500 μs, respectively. Both Er:YSGG systems perform better than Er:YAG. Numerical modelling of the free-running 50 at.% Er:YSGG and Er:YAG systems is undertaken with good qualitative agreement with experimental results. Electro-optic Q-switching of the 50 at.% Er:YSGG laser using a LiNbO3 crystal yields ~0.5 mJ pulses with ~77 ns duration.  相似文献   

13.
The continuous-wave (CW) and acoustooptically (AO) Q-switched operation of a Tm (4 at %), Ho (0.4 at %):GdVO4 laser at a 2.05-μm wavelength were reported in this paper. The Tm,Ho:GdVO4 crystal was cooled by liquid nitrogen and end pumped by a 29.8-W fiber-coupled laser diode at 801 nm. A conversion efficiency of 41% and a slope efficiency of 46% were acquired with a continuous-wave output power of 12.2 W. An average power of 11.6 W was obtained at a pulse repetition frequency (PRF) of 10 kHz, corresponding to an optical-to-optical conversion efficiency of 38.9% and a slope efficiency of 41.4%. The energy per pulse of 1.8 mJ in 14 ns was achieved at 5 kHz with a peak power of 130 kW.  相似文献   

14.
Absorber-free transmission and butt-welding of different polymers were performed using thulium fiber laser radiation at the wavelength 2 μm. The relations between the laser process conditions and the dimensions and quality of the seam were investigated by means of optical and phase-contrast microscopy. Mechanical properties of the weld joints were studied in tensile strength tests. Laser-welded polyethylene samples revealed a tensile strength of greater than 80% of the bulk material strength. Transmission welding of different polymer combinations featured the formation of different joint classes depending on the spectral properties. The experiments demonstrate new application areas of mid-IR fiber laser sources for materials processing.  相似文献   

15.
We demonstrated the first use of carbon nanotube as a saturable absorber in the Q-switched and Q-switched mode-locking of a diode pumped Tm:YAP operating at 2 μm. At the incident pump power of 8.64 W, the minimum Q-switched pulse width of 255.1 ns, and the maximum peak power 53.1 W can be obtained with the corresponding repetition rate of 21.76 kHz. The performance of a diode-pumped passively Q-switched mode-locked Tm:YAP laser with high repetition rate formed with a folded cavity. As high as 780 mW average output power was produced in QML laser. The repetition rate of the mode-locked pulse inside the Q-switched envelope was 244.1 MHz. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

16.
Spectroscopic data of a V3+:YAG passive Q-switch crystal were measured. The absorption recovery time was determined to be of 37±7 ns and the ground state absorption cross section was estimated to be 0.7×10-18 cm2 at 1.44 μm and 3.5×10-18 cm2 at 1.34 μm. Passively Q-switched operation of diode pumped 1.44 μm and 1.3 μm Nd:YAG lasers was demonstrated using this crystal as saturable absorber. Average output powers of 1.42 W (1.44 μm) and 1.56 W (1.34 μm) and pulse energies of 24 μJ (1.44 μm) and 25 μJ (1.34 μm) were observed, respectively. Received: 19 August 2002 / Published online: 12 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-40/42838-6281, E-mail: kretschmann@physnet.uni-hamburg.de  相似文献   

17.
We present the results obtained with a Ho,Tm:YLF crystal grown at a new crystal growth facility in Pisa. The optical quality of the sample has been tested by studying its performance as the active medium of a laser operating at 2.06 μm. We employed three different pump laser sources: a Ti:sapphire, a diode (both tuned at 793 nm) and, for the first time, a continuous-wave Co:MgF2 laser, tuned at 1.682 μm. At room temperature the best slope efficiency was 30 % in the case of “red” pumping, and 59 % in the case of “infrared” excitation. The typical lasing threshold is about 100 mW. Received: 14 March 2001 / Revised version: 15 June 2001 / Published online: 19 September 2001  相似文献   

18.
19.
Sensitivity studies are also performed, to evaluate the minimum detectable concentration of HCl in air. Received: 7 August 1998/Revised version: 5 October 1998  相似文献   

20.
Linewidth enhancement factor (LEF) of InAs/InP quantum dot (QD) multi-wavelength lasers (MWLs) emitting around 1.5 μm is investigated both above and below the threshold. Above the threshold, LEFs at three different wavelengths around the gain peak of 1.53 μm by the injection locking technique are obtained to be 1.63, 1.37 and 1.59. Then by Hakki–Paoli method LEF is found to decrease with increased current and shows a value of less than 1 below the threshold. These small LEF values have clearly indicated that our developed InAs/InP QDs are perfect and promising gain materials for QD MWLs, QD mode-locked lasers (QD MLLs) and QD distributed-feedback (QD DFB) lasers around 1.5 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号