首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric structures and isomeric stabilities of various stationary points in CH2Si2 neutral, cation and anion are investigated at the coupled-cluster singles, doubles (triples) (CCSD(T)) level of theory. For the geometrical survey, the basis sets used are of the cc-pVTZ for the neutral and cation. The final energies are calculated by the use of the CCSD(T) level of theory with the aug-cc-pVTZ basis set at their optimized geometries. To the competitive two-anion isomers, the aug-cc-pVTZ basis sets are applied. The global minimum (N-1) of the CH2Si2 neutral has a quite different framework from those of the C3H2 (cyclopropenylidene) and Si3H2 (trisilacyclopropenylidene) neutrals. No competitive low-lying isomers are found in the CH2Si2 neutral. The attractive conformer (C-1) is predicted for the most stable cation, where its framework is quite different from that of the neutral N-1. Both H atoms are connected to the same C atom, but each C–H bond length is different from each other. Two competitive anion isomers with positive (real) electron affinities are predicted. The framework of the most stable anion A-1 is quite similar to that of the cation C-1, whereas both H atoms are equally connected to the same C atom. The framework of the anion isomer A-2 is the same as that in the neutral N-1. The vertical and adiabatic ionization potentials from the most stable neutral N-1 are 9.02 and 8.71 eV, respectively. The adiabatic electron affinity of the lowest lying isomer N-1 is only 0.43 eV and the vertical electron detachment energy form the global minimum anion (A-1) is 2.02 eV. The multi-centered Si–H–Si bonds are found in the neutral, cation, and anion.  相似文献   

2.
The geometric structures, isomeric stabilities, and potential energy profiles of various isomers and transition states in Si(3)H(2) neutral, cation and anion are investigated at the coupled-cluster singles, doubles (triples) level of theory. For the geometrical survey, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality (cc-pVTZ) for the neutral and cation and the Dunning's correlation consistent basis sets of double-zeta quality with diffuse functions (aug-cc-pVDZ) for the anion. For the final energy calculations, the aug-cc-pVTZ: Dunning's correlation consistent basis sets of triple-zeta quality with diffuse functions and cc-pVQZ: Dunning's correlation consistent basis sets of quadruple-zeta quality basis sets are used for the neutral and the aug-cc-pVTZ ones for the cation and anion. The global minimum neutral (I-1: (1)A(1)) has the same framework as that (cyclopropenylidene) of the C(3)H(2) molecule. Other low-lying three isomers (I-2, I-3, and I-4) are also predicted to be within 20 kJ/mol. Five transition states are optimized and their energy relationships with the isomers are clarified. The geometric structure of the global minimum cation (C-1: (2)A(1)) has the same framework as that of the neutral, but that of the anion (A-1: (2)A(')) differs very much from those of the neutral and cation. The calculated vertical and adiabatic ionization potentials from the global minimum neutral (I-1) are 7.85 and 7.77 eV, respectively. The adiabatic electron affinity of the neutral I-1 and the electron detachment energy of the global minimum anion (A-1) are predicted to be 1.21 and 1.92 eV, respectively. The two-electron three-centered bond is widely observed in the present Si(3)H(2) neutral, cation, and anion. The contour plots of their localized molecular orbitals clearly show the existence of such nonclassical chemical bonds.  相似文献   

3.
The geometric structures and isomeric stabilities of various stationary points in Si(3)H(3) neutral and its anion are investigated at the coupled-cluster singles, doubles (triples) [CCSD(T)] level of theory. For geometrical surveys, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality for the neutral. To the anions, the Dunning's correlation consistent basis sets of double-zeta quality with diffuse functions are applied. For the three lower-lying anion isomers, the Dunning's correlation consistent basis sets of triple-zeta quality with diffuse functions (aug-cc-pVTZ) are also used. The final energies for the optimized stationary points are calculated at the CCSD(T) level of theory with the aug-cc-pVTZ basis sets. The basis sets of 6-311++G(3df,2pd) were also used for the lower-lying anion isomers. The Gaussian-2 method was performed only for the lower-lying anion isomers to clarify the relative stabilities. The global minimum neutral 1 (C(1):(2)A) has an unsymmetrical hydrogen-bridged bond; the conformer 2 in C(s) symmetry is a saddle point connecting the two equivalent isomers 1. Two lower-lying isomers (3 and 4) are also predicted within the energy range of 20 kJmol. In the anion, however, the conformer 4 (C(s):(1)A(')) with five formal valence electrons is a global minimum. Two more isomers (2 and 3) lie within 20 kJmol as in the neutral; the conformer 1 converts to the isomer 2. The quartets for the neutrals and diradical triplets for the anions were further studied; lower-lying quartets and triplets, competing with the corresponding doublet and singlet, respectively, were not found in the present systems. The vertical and adiabatic electron affinities of the global minimum neutral 1, producing the second lowest-lying anion isomer 2, amount to 2.18 and 2.35 eV, respectively, at the CCSD(T)/aug-cc-pVTZ level of theory. The electron addition to the third lowest-lying neutral isomer 4 produces the largest vertical electron affinities of 2.48 eV. The D(3h) structure, being the global minimum in the corresponding Si(3)H(3) (+) cation (trisilacyclopropenyl cation), converts to the isomer 8 (C(s)) or 11 (C(2)) due to the Jahn-Teller effect in the Si(3)H(3) neutral.  相似文献   

4.
MP2 and CCSD(T) complete basis set (CBS) limit interaction energies and geometries for more than 100 DNA base pairs, amino acid pairs and model complexes are for the first time presented together. Extrapolation to the CBS limit is done by using two-point extrapolation methods and different basis sets (aug-cc-pVDZ - aug-cc-pVTZ, aug-cc-pVTZ - aug-cc-pVQZ, cc-pVTZ - cc-pVQZ) are utilized. The CCSD(T) correction term, determined as a difference between CCSD(T) and MP2 interaction energies, is evaluated with smaller basis sets (6-31G** and cc-pVDZ). Two sets of complex geometries were used, optimized or experimental ones. The JSCH-2005 benchmark set, which is now available to the chemical community, can be used for testing lower-level computational methods. For the first screening the smaller training set (S22) containing 22 model complexes can be recommended. In this case larger basis sets were used for extrapolation to the CBS limit and also CCSD(T) and counterpoise-corrected MP2 optimized geometries were sometimes adopted.  相似文献   

5.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

6.
Margulès  L.  Demaison  J.  Boggs  James E. 《Structural chemistry》2000,11(2-3):145-154
Twenty eight CC bonds lengths (from a sample of 23 molecules) whose experimental equilibrium structures are thought to be reliable are calculated ab initio. Two different correlated methods are compared: MP2 and CCSD(T). The convergence of Dunning's correlation consistent polarized valence basis sets, cc-pVnZ is also studied. With the CCSD(T)/cc-pVQZ method, a systematic correction of about 0.0034 Å is necessary when the frozen core approximation is used. With this offset of 0.0034 Å taken into account, the accuracy (standard deviation) is 0.0013 Å. With the cc-pVTZ basis set, the correction increases to 0.0066 Å and the accuracy drops to 0.0018 Å. The MP2 method is significantly less accurate and the offset only remains constant for similar bonds. During this work, new structures are calculated for methyl cyanide, oxirane, cyclopropenylidene, allene, and cyclopropene.  相似文献   

7.
The geometrical structures of the C3H3 anion are surveyed at the coupled-cluster doubles (CCD) level of theory with the aug-cc-pVDZ basis set. To clarify the CCD geometries, the stable two isomers -- propynl-l-yl 1 and allenyl 2 anions -- are further optimized at the coupled-cluster singles, doubles (triples) (CCSD(T)) level of theory both with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The final energies are calculated at the CCSD(T) and the complete active space self-consistent field (CASSCF) multi-reference internally contracted CI (MRCI) levels of theory with the aug-cc-pVTZ basis set. At the MRCI level of theory including both the corrections due to the cluster energies (MRCI+Q) and the zero-point vibrational energies, the allenyl anion 2 is about 1.3 kcal mol−1 lower in energy than the propynl-l-yl anion 1. These results contrast with the previous theoretical estimates, where the propynl-l-yl anion 1 is 2-3 kcal mol−1 lower in energy than the allenyl anion 2. The activation energies of the intramolecular hydrogen transfer in the 1 → 2 conversion reactions are 63.5 kcal mol−1 at the MRCI+Q level of theory with the aug-cc-pVTZ basis set including the zero-point energy corrections. The adiabatic electron affinity of the planer propargyl (H2CCCH) radical, which is the global minimum of the C3H3 radical, is calculated to be 0.976 eV (after correction for the zero-point energy changes) at the CCSD(T) level of theory with the aug-cc-pVTZ basis set. The present electron affinity is in fairly good agreement with the experimental one (0.893 eV) observed by Oakes and Ellison.  相似文献   

8.
Systematic quantum chemical calculations have been performed to obtain precise estimates of the equilibrium and vibrationally averaged molecular structure and electric dipole moment of vinylacetylene (VA, 1-buten-3-yne). Anharmonic (cubic and semi-diagonal quartic) MP2/cc-pVTZ force fields in normal coordinates were computed to account for anharmonic vibrational effects, including zero-point contributions to the rotational constants and the electric dipole moment. A simultaneous weighted least-squares structural refinement was performed, resulting in the best semispectroscopic estimate of the re structure of VA. The refinement was based on experimentally measured ground-state rotational constants of two isotopologs of VA corrected to equilibrium values using MP2/cc-pVTZ vibration-rotation interaction constants and all-electron CCSD(T)/aug-cc-pVTZ structural constraints. The semispectroscopic re structure of VA agrees excellently with the high-level CCSD(T)/aug-cc-pVTZ ab initio structure. The most dependable, CCSD(T)/cc-pVQZ//CCSD(T)/aug-cc-pVTZ equilibrium electric dipole moment of VA, in D, is mua= 0.4088, mub= 0.0004, and muc= 0. The vibrationally corrected a-component of 0.4214 D is in excellent agreement with one of the available experimental values. The present analysis shows that mub is negligible even after vibrational correction. A simple quantitative structure-property relationship (QSPR) model resulted in a highly similar estimate, 0.45 D, for the electric dipole moment of VA.  相似文献   

9.
With relatively simple model spaces derived from valence bond models, a straightforward zero-order Hamiltonian, and the use of moderate-sized Dunning-type correlation consistent basis sets (cc-pVTZ, aug-cc-pVTZ, and cc-pVQZ), the second order generalized Van Vleck perturbation theory (GVVPT2) method is shown to produce potential energy curves (PECs) and spectroscopic constants close to experimental results for both ground and low-lying excited electronic states of Sc(2), Cr(2) and Mn(2). In spite of multiple quasidegeneracies (particularly for the cases of Sc(2) and Mn(2)), the GVVPT2 PECs are smooth with no discontinuities. Since these molecules have been identified as ones that widely used perturbative methods are inadequate for describing well, due to intruder state problems, unless shift parameters are introduced that can obfuscate the physics, this study suggests that the conclusion about the inadequacy of multireference perturbation theory be re-evaluated. The ground state of Sc(2) is predicted to be X(5)∑(u)(-), and its spectroscopic constants are close to the ones at the MRCISD level. Near equilibrium geometries, the 1(3)∑(u)(-) electronic state of Sc(2) is found to be less stable than the quintet ground state by 0.23 eV. The Cr(2) PEC has several features of the Rydberg-Klein-Rees (RKR) experimental curve (e.g., the pronounced shelf at elongated bond lengths), although the predicted bond length is slightly long (R(e) = 1.80 ? with cc-pVQZ compared to the experimental value of 1.68 ?). The X(1)∑(g)(+) ground state of Mn(2) is predicted to be a van der Waals molecule with a long bond length, R(e), of 3.83 ? using a cc-pVQZ basis set (experimental value = 3.40 ?) and a binding energy, D(e), of only 0.05 eV (experimental value = 0.1 eV). We obtained R(e) = 3.40 ? and D(e) = 0.09 eV at the complete basis set (CBS) limit for ground state Mn(2). Low lying excited state curves have also been characterized for all three cases (Cr(2), Mn(2), and Sc(2)) and show similar mathematical robustness as the ground states. These results suggest that the GVVPT2 multireference perturbation theory method is more broadly applicable than previously documented.  相似文献   

10.
In this paper, the ground and excited states of N2O2 were studied at the multireference configuration interaction (MRCI) level of theory with Dunning's [J. Chem. Phys. 90, 1007 (1985); 96, 6796 (1992)] correlation consistent basis sets augo-cc-pVDZ and aug-cc-pVTZ. The geometry optimizations were performed for the ground state of N2O2. The vertical excitation energies and transition moments were calculated for the low-lying singlet states of N2O2 including the lowest three 1A1 states, two 1B1 states, one 1B2 state, and two 1A2 states at the MRCI level of theory with Dunning's correlation consistent basis sets aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ. Furthermore, for the first time, the potential energy curves were calculated at the complete active space self-consistent-field and MRCI levels of theory for as many as 12 N2O2 singlet electronic states along the N-N distance. The dissociation asymptotes of these 12 N2O2 singlet electronic states were discussed.  相似文献   

11.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

12.
Highly correlated ab initio coupled-cluster theories (e.g., CCSD(T), CCSDT) were applied on the ground electronic states of Si(2)H(3) and Si(2)H(4), with substantive basis sets. A total of 10 isomers, which include mono- and dibridged structures, were investigated. Scalar relativistic corrections and zero-point vibrational energy corrections were included to predict reliable energetics. For Si(2)H(3), we predict an unanticipated monobridged H(2)Si-H-Si-like structure (C(s), (2)A') to be the lowest energy isomer, in constrast to previous studies which concluded that either H(3)Si-Si (C(s), (2)A') or near-planar H(2)Si-SiH (C(1), (2)A) is the global minimum. Our results confirm that the disilene isomer, H(2)Si-SiH(2), is the lowest energy isomer for Si(2)H(4) and that it has a trans-bent structure (C(2)(h), (1)A(g)). In addition to the much studied silylsilylene, H(3)Si-SiH, we also find that a new monobridged isomer H(2)Si-H-SiH (C(1), (1)A, designated 2c) is a minimum on the potential energy surface and that it has comparable stability; both isomers are predicted to lie about 7 kcal/mol above disilene. By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, the rotational spectrum of this novel Si(2)H(4) isomer has recently been measured in the laboratory, as has that of the planar H(2)Si-SiH radical. Harmonic vibrational frequencies as well as infrared intensities of all 10 isomers were determined at the cc-pVTZ CCSD(T) level.  相似文献   

13.
14.
We report a Franck-Condon analysis in reduced dimensionality of the ionization thresholds of linear(l)-C3H and cyclic(c)-C3H using MP2-based potential energy surfaces and CCSD(T)/aug-cc-pVTZ calculations of electronic energies at selected geometries. The potential energy surfaces are fits to tens of thousands of MP2/aug-cc-pVTZ energies for the neutral and cation systems. These fits properly describe the invariance of the potential with respect to all permutations of the three C atoms. The realism of the potential surfaces is assessed by comparing stationary-point structures, energies, and normal-mode frequencies with previous high-level ab initio calculations. Several key vibrational modes in this ionization process are located at saddle points and so a numerical approach to obtain the Franck-Condon factors for those modes is done. On the basis of this analysis combined with a simple harmonic treatment of the energies of the remaining modes and key electronic energy differences obtained with CCSD(T)/aug-cc-pVTZ calculations, we find the threshold ionization energy of l-C3H to be 9.06 eV and for c-C3H we estimate the threshold to be in the range 9.70-9.76 eV. We estimate these values are accurate to within +/-0.05 eV.  相似文献   

15.
The rate constants of the H-abstraction reactions from CH(3)Cl and CH(3)Br molecules by ClO and BrO radicals have been estimated over the temperature range of 300-2500 K using four different levels of theory. Calculations of optimized geometrical parameters and vibrational frequencies are performed using B3LYP and MP2 methods combined with the cc-pVTZ basis set. Single-point energy calculations have been carried out with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (perturbatively) electron excitations CCSD(T) using the cc-pVTZ and cc-pVQZ basis sets. Canonical transition-state theory combined with an Eckart tunneling correction has been used to predict the rate constants as a function of temperature. In order to choose the appropriate levels of theory with chlorine- and bromine-containing species, the reference reaction Cl ((2)P(3/2)) + CH(3)Cl → HCl + CH(2)Cl (R(ref)) was first theoretically studied because its kinetic parameters are well-established from numerous experiments, evaluation data, and theoretical studies. The kinetic parameters of the reaction R(ref) have been determined accurately using the CCSD(T)/cc-pVQZ//MP2/cc-pVTZ level of theory. This level of theory has been used for the rate constant estimation of the reactions ClO + CH(3)Cl (R(1)), ClO + CH(3)Br (R(2)), BrO + CH(3)Cl (R(3)), and BrO + CH(3)Br (R(4)). Six-parameter Arrhenius expressions have been obtained by fitting to the computed rate constants of these four reactions (including cis and trans pathways) over the temperature range of 300-2500 K.  相似文献   

16.
A high-level ab initio study has been performed on the conformational structure and vibrational spectra of HO(2)NO(2). Calculations carried out with coupled-cluster methods using a series of Pople and Dunning basis sets reveal that there is a significant basis set dependence on the predicted ab initio structure. Higher angular momentum basis sets are shown to be necessary in order to bring the calculated structure into agreement with experimental rotational constants. Harmonic vibrational frequencies of HO(2)NO(2) are computed at the CCSD(T)/aug-cc-pVTZ level of theory while the corresponding vibrational anharmonicities are calculated at the MP2/cc-pVTZ level. In addition, the absorption cross sections of OH stretching overtones in HO(2)NO(2) are calculated using a dipole function computed at the QCISD level of theory and found to be in good agreement with the available experimental data.  相似文献   

17.
Ab initio and density functional theory (DFT) calculations were performed for obtaining fundamental vibrational frequencies of methylamine, CH3NH2, and its deuterated variants CH3ND2, CD3NH2, and CD3ND2. The calculations were carried out using the CCSD(T) coupled cluster approximation with cc-pVTZ and cc-pVQZ basis sets, and by the DFT method with the semiempirical hybrid functional B97-1 with polarization consistent pc-2 and pc-3 basis sets. Reasonable performance of the DFT harmonic and ab initio harmonic calculations was found, which improved considerably upon combination of the harmonic fundamental frequencies with anharmonic corrections from the smaller, pc-2, basis. The computed anharmonic fundamental frequencies of methylamine isotopologues agree very well with the experimental values and represent a useful tool for assignment and analysis of the dominant resonances.  相似文献   

18.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

19.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

20.
Boroxines are the six-membered cyclotrimeric dehydration products of organoboronic acids, 3R–B(OH)2 → R3B3O3 + 3H2O, and in recent years have emerged as a useful class of organoboron molecules with applications in organic synthesis both as reagents and catalysts, as structural components in boronic-acid-derived pharmaceutical agents, and as anion acceptors and electrolyte additives for battery materials [Korich, A. L.; Iovine, P. M. Dalton Trans. 2010, 39, 1423?1431]. Second-order M?ller–Plesset perturbation theory, in conjunction with the Dunning–Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets, was used to investigate the structures and relative energies of the endo–exo, anti, and syn conformers of the aliphatic boronic acids R–B(OH)2 (R = H, H3C, H2N, HO, and F), as well as the thermodynamics of their boroxine formation; single-point calculations at the MP2/aug-cc-pVQZ, MP2/aug-cc-pV5Z, and CCSD(T)/aug-cc-pVTZ levels using the MP2/aug-cc-pVTZ optimized geometries were also performed in selected cases. The endo–exo conformer was generally lowest in energy in vacuo, as well as in PCM and CPCM models of aqueous and carbon tetrachloride media. The values of ΔH(298)(0) for boroxine formation via dehydration from the endo–exo conformers of these aliphatic boronic acids ranged from ?2.9 for (H2N)3B3O3 to +12.2 kcal/mol for H3B3O3 at the MP2/aug-cc-pVTZ level in vacuo; for H3B3O3, the corresponding values in PCM/UFF implicit carbon tetrachloride and aqueous media were +11.2 and +9.8 kcal/mol, respectively. On the basis of our calculations, we recommend that ΔHf(298K) for boroxine listed in the JANAF compilation needs to be revised from ?290.0 to approximately ?277.0 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号