首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于考虑初始荷载效应情况下板的一般形式的静力平衡微分方程,运用坐标变换得到了轴对称情形,考虑初始荷载效应后圆形板的极坐标形式的静力平衡微分方程。运用Galerkin法解得了简支等边三角形板、固支椭圆板、固支圆形板和简支圆形板四种非正交边界板考虑初始荷载效应的后期荷载位移近似解。运用相关文献提出的有限元法验证了近似解的正确性。各位移近似解表达式简单、物理意义明确,清楚地反映了初始荷载及相关因素对后期荷载位移的影响。计算分析表明:初始荷载效应提高了板的弯曲刚度,减小了板的后期荷载位移;板的初始荷载效应主要受初始荷载、跨厚比及边界条件等因素的影响。  相似文献   

2.
用变形和分解原理求混凝土板的受拉薄膜效应   总被引:1,自引:0,他引:1  
利用变形梯度直和分解,提出了基于能量原理计算钢筋混凝土板大变形时极限承载力方法,该方法考虑了薄膜效应影响并与传统塑性铰线理论相统一,既适用于矩形板和方形板,也适用于各向同性配筋和各向异性配筋的板,认为薄膜效应主要是由于塑性铰线处钢筋的伸长耗能造成的,该方法还可以解释同样挠度下方形板比矩形板早破坏和同样配筋时在矩形板短跨方向钢筋断裂的试验现象.计算结果与试验具有很好的一致性.  相似文献   

3.
首先基于能量变分原理,给出了同时考虑初始纵向、横向荷载效应情况下板的应变能表达、动力平衡微分方程及单元刚度矩阵。再以动力平衡微分方程为基础,运用伽辽金法解得四种典型板同时考虑初始纵向、横向荷载效应的基频近似解,并运用瑞利法解得简支矩形板考虑初始纵向、横向荷载效应的前三阶频率近似解。然后相互验证了考虑初始纵向、横向荷载效应的板单元刚度矩阵和频率近似解的正确性,并进一步分析了初始纵向、横向荷载及相关因素对板自振频率的影响。结果表明,考虑初始纵向、横向荷载效应后,板的自振频率主要受初始纵向荷载、初始横向荷载、板的厚度及边界条件等因素的影响;初始纵向、横向荷载效应对板的基频影响明显于高阶频率;初始纵向、横向荷载对板的自振频率影响分别呈线性和抛物线规律。  相似文献   

4.
基于精化锯齿理论和新修正偶应力理论,建立了能够准确预测功能梯度夹心微板挠度、位移和应力的静弯曲模型。为了描述微板不同方向上的尺度效应,将两个正交材料尺度参数引入本文模型。以受双向正弦载荷作用的简支板为例,探究了夹心微板弯曲行为中尺度效应对结构刚度的影响。算例结果表明,当微板几何参数与材料尺度参数接近时,基于本文模型所测微板的最大弯曲挠度、局部位移和应力均小于传统精化锯齿理论给出的结果,捕捉到了尺度效应;尺度效应随着微板几何尺寸的增大而逐渐减弱,当微板几何尺寸远大于材料尺度参数时,尺度效应消失。此外,板的跨厚比和功能梯度变化指数也会对尺度效应产生一定影响。  相似文献   

5.
Dong Yuli 《力学学报》2010,42(6):1180
利用变形梯度直和分解, 提出了基于能量原理计算钢筋混凝土板大变形时极限承载力方法, 该方法考虑了薄膜效应影响并与传统塑性铰线理论相统一, 既适用于矩形板和方形板, 也适用于各向同性配筋和各向异性配筋的板, 认为薄膜效应主要是由于塑性铰线处钢筋的伸长耗能造成的, 该方法还可以解释同样挠度下方形板比矩形板早破坏和同样配筋时在矩形板短跨方向钢筋断裂的试验现象. 计算结果与试验具有很好的一致性.  相似文献   

6.
首先基于能量变分原理,给出了同时考虑初始纵向、横向荷载效应情况下板的应变能表达、动力平衡微分方程及单元刚度矩阵。再以动力平衡微分方程为基础,运用伽辽金法解得四种典型板同时考虑初始纵向、横向荷载效应的基频近似解,并运用瑞利法解得简支矩形板考虑初始纵向、横向荷载效应的前三阶频率近似解。然后相互验证了考虑初始纵向、横向荷载效应的板单元刚度矩阵和频率近似解的正确性,并进一步分析了初始纵向、横向荷载及相关因素对板自振频率的影响。结果表明,考虑初始纵向、横向荷载效应后,板的自振频率主要受初始纵向荷载、初始横向荷载、板的厚度及边界条件等因素的影响;初始纵向、横向荷载效应对板的基频影响明显于高阶频率;初始纵向、横向荷载对板的自振频率影响分别呈线性和抛物线规律。  相似文献   

7.
为获得椭圆截面截卵形刚性弹体正贯穿加筋板的剩余速度,根据椭圆截面弹体贯穿靶板的破坏特征,认为贯穿过程中靶板的能量耗散方式主要为塞块剪切变形功与塞块动能、扩孔塑性变形功、花瓣动力功、花瓣弯曲变形功、靶板整体凹陷变形功、加强筋侧向凹陷变形功。推导了每种能量计算方法,计算中定量考虑了靶板扩孔、花瓣弯曲、凹陷变形的应变率效应。根据能量守恒关系,得到了椭圆截面弹体剩余速度和弹道极限速度预测公式。并通过实验结果对模型进行了验证。结果表明:考虑靶板应变硬化、应变率效应的贯穿模型可以准确预测弹体剩余速度;随着椭圆截面弹体长短轴之比的增大,靶板的弹道极限速度近似线性增大;长短轴之比小于3时,加筋板的主要耗能为花瓣弯曲变形能、整体凹陷变形能。  相似文献   

8.
吴亚舸  张其林 《力学季刊》2006,27(2):286-294
本文根据势能驻值原理,建立了均匀受压矩形管的大挠度弹性屈曲理论,用于分析屈曲后相邻板件间的相互约束作用,即屈曲后板组效应。该方法通过引入拉格朗日乘子,使系统总势能取驻值的同时,形函数能满足一系列基本的,但非完备的边界条件;在此基础上采用增量法将非线性方程组线性化,从而确定给定荷载下矩形管的受力状态及变形。由于系统总势能是以解析式的形式给出,且仅需取有限的级数项就可达到满意的精度,故该半解析法具有计算效率高的特点。目前许多国家的钢结构设计规范中,在计算受压板件的有效宽度时,常采用板组约束系数来考虑板组效应。由于有效宽度法本身考虑了板的屈曲后强度,而约束系数多数却是建立在小挠度弹性屈曲理论上的,故有必要分析板件的屈曲后板组效应。本文详细讨论了矩形管的屈曲后板组效应,并与小挠度理论给出的计算结果进行比较,得出了均匀受压矩形管屈曲后板组效应减弱的结论。  相似文献   

9.
为研究弹体侵彻厚混凝土靶的迎弹面成坑效应,总结了侵彻实验中的成坑现象,分析了经验公式对成坑深度、成坑直径和成坑角等成坑效应的预测效果;考虑了撞击速度、靶板强度、配筋以及弹体直径和质量等因素的影响,采用量纲分析方法建立了新型成坑效应计算公式及成坑阶段耗能计算公式;基于新型成坑效应计算公式,对成坑效应的影响因素和成坑耗能进行了参数化分析。结果表明:无量纲成坑深度受靶板强度、配筋率和弹体质量的影响较大;对于钢筋混凝土,成坑深度随撞击速度提升呈先增大后减小再增大的变化规律;在常见的侵彻速度和质量范围内,成坑角为15°~24°,质量对成坑角影响较小;迎弹面成坑耗能占弹体总动能的10%~25%,且配筋率和靶板强度对成坑耗能比例的影响较小;弹体质量越小,成坑阶段耗能占比越大。新型成坑效应计算公式对成坑深度、直径和角度的计算结果与实验数据吻合较好,可为侵彻弹体设计和工程防护提供参考。  相似文献   

10.
利用非局部应变梯度理论研究了纳米板横向自由振动特性。通过迭代法获得非局部应力的渐近表达式,利用哈密顿变分原理推导了纳米板的振动控制方程。针对四边简支边界条件,运用双重三角级数法给出了板固有频率的表达式,然后研究了非局部参数、材料特征参数、几何尺寸对纳米板自振频率的影响。数值结果表明:非局部效应会弱化纳米板的等效刚度,因而使板的固有频率降低,应变梯度效应则与之相反,两类效应仅在纳米尺度下对自振频率有显著影响;板几何尺寸的改变也会对其振动频率产生重要影响。  相似文献   

11.
利用非局部应变梯度理论研究了纳米板横向自由振动特性。通过迭代法获得非局部应力的渐近表达式,利用哈密顿变分原理推导了纳米板的振动控制方程。针对四边简支边界条件,运用双重三角级数法给出了板固有频率的表达式,然后研究了非局部参数、材料特征参数、几何尺寸对纳米板自振频率的影响。数值结果表明:非局部效应会弱化纳米板的等效刚度,因而使板的固有频率降低,应变梯度效应则与之相反,两类效应仅在纳米尺度下对自振频率有显著影响;板几何尺寸的改变也会对其振动频率产生重要影响。  相似文献   

12.
通过在叠层板单层厚度方向上布置温度线的方法,求解了考虑辐射散热边界条件下的叠层板的瞬态温度场;在此基础上利用考虑剪切效应的高阶板位移场建立板振动的有限元方程,分析了叠层板的热诱发振动问题;通过算例与ANSYS三维耦合单元(Solid5)结果的对比表明,提出的计算模型和方法具有很好的计算效率和精度.  相似文献   

13.
爆炸复合板边界效应研究   总被引:2,自引:0,他引:2  
认为引起边界效应的主要因素不仅有炸药和基、复板边界稀疏的影响,而且尚受复板反弹拉伸的作用。设计了不等面积复合板爆炸焊接工艺,超声探伤结果表明,复合板的边界效应极小,满足工程需要。  相似文献   

14.
考虑尺寸效应板梁的磁弹性屈曲   总被引:2,自引:0,他引:2  
研究表明,有限尺寸效应是影响板——梁磁弹性稳定性分析精度的主要原因。本文用边界元法分析了板边沿的磁感强度集中,然后用里兹法计算了软铁磁材料悬臂板——梁的临界屈曲磁场。通过和Moon-Pao的理论和实验结果以及Miga的有限元结果比较,表明本方法具有良好的精度,且计算方法简便。  相似文献   

15.
将靶体视为不可压缩材料,假定空腔膨胀产生塑性-弹性响应分区,构造了靶背自由表面效应的衰减函数。将衰减函数乘以可压缩幂次硬化材料的阻力方程,得到了弹体贯穿金属靶板的阻力函数。基于弹性衰减-塑性衰减-开裂3个阶段,建立了同时考虑靶体可压缩性、靶背自由表面和开裂影响的弹体贯穿有限厚金属靶板的分析模型,推导得出了弹体瞬时速度的解析方程,并采用数值方法计算得到了弹体的过载、瞬时速度和残余速度。通过与6组实验数据和已有模型的对比得到,当靶板厚度和弹体冲击速度在一定范围内时,需要考虑自由表面效应的影响。  相似文献   

16.
谈至明  从志敏  杜建訸  朱唐亮  姚尧 《应用力学学报》2020,(2):500-508,I0002,I0003
应用双重正弦级数展开的方法,推演得到了文克勒地基上计入两块矩形板间接缝传荷效应的级数解。假设接缝传递剪力与板间挠度差成正比、传递弯矩与板间转角差成正比,进而分析了单轮和单轴荷载作用在纵缝边缘中部时,接缝传荷效应对板边最大挠度和最大应力的影响规律;通过引入接缝传荷效应系数和接缝极限传荷的两个挠度比及两个应力比,建立了计入接缝传荷效应的板边最大挠度和最大应力的一般式,总结了不同板尺寸、荷载面积尺寸和类型及板材料泊松比对四个接缝影响系数和四个接缝极限传荷的挠度比及应力比的影响规律。结果表明:不同荷载面积下,受荷板接缝边缘最大挠度、最大应力均随弯矩或剪力传荷刚度系数的增大而减小,且应力的变化幅度相较挠度要小。影响系数fV^w(ξV)、fM^w(ξM)、fM^σ(ξM)与荷载圆相对半径(a/l)、相对板长(L/l)和相对板宽(B/l)无关,且单轮荷载与双轮荷载规律相同;而影响系数fV^σ(ξV)与荷载圆相对半径(a/l)有关,与相对板长(L/l)和相对板宽(B/l)无关;挠度比λV^w与荷载圆相对半径、板尺寸(L/l,B/l)及泊松比v无关,恒等于0.5,而λM^w、λV^σ、λM^σ均与荷载相对半径(a/l)、板尺寸(L/l,B/l)及泊松比v有关,且影响因素中荷载面积尺寸的影响最为显著。  相似文献   

17.
考虑微生化传感器中谐振器的结构特点,基于Kirchhoff薄板理论与表面弹性理论推导了考虑表面效应的双层圆板的自由振动方程.使用伽辽金法得到了近似解.分析了硬化与软化表面效应与表面残余应力对双层圆板固有频率的影响.结果表明,与已有简化的单层圆板模型相比,现有考虑表面效应的双层板模型会得到与之不同的固有频率.随着板厚与上...  相似文献   

18.
曹彩芹  陈晶博  李东波 《力学学报》2022,54(11):3088-3098
具有尺度依赖的挠曲电效应在器件的设计中扮演着越来越关键的角色, 研究人员在微纳米尺度多物理场分析中进行了大量工作. 基于考虑挠曲电和电场梯度效应的弹性介电材料非经典理论, 以二维纳米板为例, 通过理论建模, 分析纳米板在弯曲问题中的力?电耦合行为. 根据Mindlin假设给出板的位移场和电势场的一阶截断, 选取板的材料为立方晶体(m3m点群), 将广义三维本构方程代入到高阶应力、高阶偶应力、高阶电位移和高阶电四极矩的表达式中得到相应的二维本构方程, 利用弹性电介质变分原理得到板的控制方程和边界上的线积分等式, 分别将二维本构方程和边界上外法线的方向余弦代入, 得到板的高阶弯曲方程、高阶电势方程以及对应的四边简支边界条件. 利用四边简支矩形板的高阶弯曲方程、高阶电势方程和相应的边界条件, 根据Navier解理论, 求解纳米板的电势场, 重点分析电场梯度对板内一阶电势的影响. 数值计算结果表明: 电场梯度对纳米板中由挠曲电效应产生的一阶电势有削弱作用, 且材料参数g11越大, 一阶电势受到的削弱越大; 同时电场梯度的存在消除了纳米板在受横向集中载荷作用时一阶电势的奇异性. 本文是对具有挠曲电效应和电场梯度效应的纳米板结构分析理论的一个扩展, 为微纳米尺度器件的结构设计提供参考.   相似文献   

19.
基于修正偶应力理论和Kirchhoff板理论,建立了功能梯度微板热力耦合屈曲等几何有限元模型。该模型仅包含一个材料尺度参数,能够描述尺度效应现象,且满足修正偶应力理论的高阶连续性要求。基于虚功原理推导了功能梯度微板热力耦合屈曲等几何有限元方程。通过对板的典型算例分析,讨论了材料尺度参数、边长比及梯度指数对板稳定性的影响。结果表明,本文模型预测的屈曲载荷总是大于宏观理论的结果,即捕捉到了尺度效应现象;随着临界屈曲力的增加,临界屈曲热载荷线性减少;此外,边长比和梯度指数也对微板的稳定性产生一定影响。  相似文献   

20.
通过分析研究爆炸焊接基复板间隙中的气体运动,建立了冲击波传播的理论模型,通过理论分析和计算说明了基复板间存在气体冲击波管道效应。管道效应使复合板尾部在爆炸焊接形成前发生上翘,造成板尾部焊接能量偏大,或使尾部炸药压死,是工程中长大复合板尾部焊接质量降低或失效的主要原因。还通过建立简化模型,分析了复合板宽度、各种保护性气体和粗真空对管道效应的影响,说明了选择爆炸焊接保护气体的原则,进而使用氦气保护进行了钛钢、铝镁爆炸焊接实验验证,为气体保护爆炸焊接、真空爆炸焊接技术的进一步开发研究奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号