首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe two new boron-based nanotubes: B(2)O and BeB(2). Both are isoelectronic to graphite, have reasonable curvature energies, and have already been made in their bulk planar forms. The lowest energy allotrope of planar single-layer B(2)O is a semiconductor with a moderate band gap. The local density approximation band gap of the corresponding (3,0) B(2)O nanotube [similar in size to (9,0) carbon nanotube tube] is direct and around 1.6 eV, within a range inaccessible to previous C or BN nanotubes. Single-layer BeB(2) has a fascinating structure: the Be atoms rest above the boron hexagonal faces, nearly coplanar to the boron sheet. The unusual K-point pi-pi(*) Fermi-level degeneracy of graphite survives, while a new nearly pointlike Fermi surface appears at the M point. As a result, BeB(2) nanotubes are uniformly metallic.  相似文献   

2.
A new class of boron-nitrogen (BN) nanotubes composed of tetragons, pentagons, hexagons, heptagons, and octagons is considered. By analogy with carbon nanotubes of the same topological structure, these nanotubes were called Haeckelites. The geometry, energetics, and electronic properties were studied in detail for two regular mutual arrangements of the polygons. It was found that Haeckelite nanotubes are dielectrics with the energy gap Eg = 3.24–4.09 eV. As the nanotube diameter increases, the energy gap Eg decreases, approaching the value for the corresponding planar Haeckelite layer. The ground-state energy of the Haeckelite BN nanotubes is 0.3 eV/atom higher than that of well-known hexagonal BN nanotubes.  相似文献   

3.
Planar and nanotubular structures that are based on boron and nitrogen and consist of tetragons, hexagons, and octagons are considered. By analogy with carbon nanoobjects of the same topology, these structures are referred to as Haeckelites. The geometric, electronic, and energy properties are thoroughly investigated for two variants of the regular mutual arrangement of the polygons. It is established that planar and nanotubular BN structures of the Haeckelite type are dielectrics with a band gap E g ∼ 3.2–4.2 eV, which is less than the band gap E g for BN nanotubes consisting only of hexagons. The cohesive energy of the BN nanotubes under investigation exceeds the cohesive energy of BN hexagonal nanotubes by 0.3 eV/atom.  相似文献   

4.
We report the electronic band structure and optical parameters of X-Phosphides (X=B, Al, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (mBJ). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are also presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 eV, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AlP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5-7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.  相似文献   

5.
We report the electronic band structure and optical parameters of X-Phosphides (X=B, Al,Ga,In) by first-principles technique based on a new approximation known as modified Becke-Johnson (mBJ). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: Eg (mBJ-GGA/LDA)Eg (GGA) Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are also presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9eV, 4-7eV, 3-7eV, and 2-7eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AlP, GaP, and InP show significant optical conductivity in the range 5.2-10eV, 4.3-8eV, 3.5-7.2eV, and 3.2-8eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.  相似文献   

6.
We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical (2, 2) tube. The strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost independent of the tube radius and system dimensionality. This provides an explanation for the observed "optical gap" constancy for different tubes and bulk hexagonal BN.  相似文献   

7.
In this work by applying first principles calculations structural, electronic and optical properties of Ca3Bi2 compound in hexagonal and cubic phases are studied within the framework of the density functional theory using the full potential linearized augmented plane wave (FP-LAPW) approach. According to our study band gap for Ca3Bi2 in hexagonal phase are 0.47, 0.96 and 1?eV within the PBE-GGA, EV-GGA and mBJ-GGA, respectively. The corresponding values for cubic phase are 1.24, 2.08 and 2.14?eV, respectively. The effects of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths and anti-symmetry gap are investigated. It is found that the hydrostatic pressure increases the band widths of all bands below the Fermi energy while it decreases the band gap and the anti-symmetry gap. In our calculations, the dielectric tensor is derived within the random phase approximation (RPA). The first absorption peak in imaginary part of dielectric function for both phases is located in the energy range 2.0–2.5?eV which are beneficial to practical applications in optoelectronic devices in the visible spectral range. For instance, hexagonal phase of Ca3Bi2 with a band gap around 1?eV can be applied for photovoltaic application and cubic phase with a band gap of 2?eV can be used for water splitting application. Moreover, we found the optical spectra of hexagonal phase are anisotropic along E||x and E||z.  相似文献   

8.
Via the example of a (5, 5) boron-nitrogen armchair nanotube, the influence of isoelectronic substitutional impurities on the electronic structure of BN nanotubes has been investigated with the use of linear augmented cylindrical waves. The treatment is based on the local density approximation and the muffin-tin approximation for the electron potential. In this method, the electronic spectrum of a system is governed by the free motion of electrons in the interatomic space between cylindrical barriers and the electron scattering on atomic centers. It has been found that the substitution of one atom of N by P leads to the splitting of all twofold degenerate bands by 0.2 eV on average, a decrease in the energy gap from 3.5 to 2.8 eV, the separation of the s(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity π(P) and π*(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of an As atom on the electronic structure of (5, 5) BN nanotubes is qualitatively similar to the case of phosphorus, but the energy gap is smaller by 0.5 eV. The optical gap in the nanotubes is closed due to the effect of the Sb atom impurity. A substitution of one B atom by an Al atom results in the strong perturbation of the band structure and the energy gap in this case is only 1.6 eV in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. In the latter case, the energy gap is 2.9 eV. The above effects can be detected by the optical and photoelectron spectroscopy methods, as well as by measuring the electrical properties of the nanotubes. They can be used to create electronic devices based on boron-nitrogen nanotubes.  相似文献   

9.
10.
A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.  相似文献   

11.
王艳丽  苏克和  王欣  刘艳 《物理学报》2011,60(9):98111-098111
用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了n=2—20不同管径的超长(n, n)型单壁碳纳米管的结构、能量、能带结构和能隙.结果表明,管径和能量(或生成焓)都随n有很好的变化规律,并可拟合成很好的解析函数.当n为2和3时,碳纳米管的能隙分别为1.836eV和0.228eV,呈半导体特征,且具有间接带隙;当n=4—20时,能隙介于0.027 eV和0.079 eV之间,呈较强的金属性,且具有直接带 关键词: 扶手椅型碳纳米管 周期边界条件(PBC) 超长模型 能带  相似文献   

12.
The electronic structure of segmented nanotubes composed of the alternating layers of (5,5) and (9,0) BN and SiC nanotubes in armchair and zigzag configurations, which differed in the orientation of the chemical bonds in the segments and the nature of the bonds (Si-N and B-C or Si-B and N-C) at the boundaries of BN and SiC regions, has been calculated using the linearized augmented cylindrical wave method. The calculations have been performed using the local density functional and the muffin-tin approximation for the electronic potential. It has been found that depending on the bonds at the segment boundaries, the (5,5) BN/SiC nanotubes are semiconductors with the energy gap E g of 1 to 3 eV, whereas the (9,0) BN/SiC nanotubes exhibited a metal, semimetal, or semiconductor (E g ~ 1 eV) type of band structures.  相似文献   

13.
Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range.  相似文献   

14.
The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain type of zigzag nanotube when doped with oxygen dimers, the energy gap is closed and the tube becomes semimetallic. At higher oxygen-dimer concentrations the gap reopens, and the tube exhibits semiconducting behavior again. The change of the band gap of the zigzag tube is understood in terms of their response to the strains caused by the dimer substitutional doping.  相似文献   

15.
Exciton effects are studied in single-wall boron-nitride nanotubes. The Coulomb interaction dependence of the band gap, the optical gap, and the binding energy of excitons are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the on-site interaction U=2t with the hopping integral t=1.1 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of nanotubes. This novel property is in contrast with that of the carbon nanotubes, which show metallic and semiconducting properties depending on the chiralities.  相似文献   

16.
Based on density functional theory calculations, we predict the stability and electronic structures of single-walled indium nitride (InN) nanotubes. Compared with other group III-nitride nanotubes with a similar diameter, strain energies of InN nanotubes relative to their graphitic sheet are the lowest, suggesting the possibility of the formation of InN nanotubes. Considering the stability of a graphitic InN sheet, InN nanotubes are in metastable states with the stability between GaN nanotubes and AlN nanotubes. Contrary to the case of carbon nanotubes and BN nanotubes, the bond-length of both horizontal and vertical In–N bonds in InN nanotubes decreases as the tube diameter increases. InN nanotubes are all semiconductors with an almost constant band gap of about 1 eV. The existence of a direct gap in zigzag InN nanotubes and the small band gap indicate that they may have potential applications in light emitting devices and solar cells.  相似文献   

17.
Electronic and optical properties of single-walled zinc oxide (ZnO) nanotubes are investigated from the firstprinciples calculations. Electronic structure calculations show that ZnO nanotubes are all direct band gap semiconducting nanotubes and the band gaps are relatively insensitive to the diameter and chirality of tubes. The origin of the common electronic band gaps of ZnO nanotubes is explained in terms of band-folding from the two-dimensional band structure of graphite-like sheet. Moreover, the optical properties such as dielectric function and energy loss function spectra of different ZnO nanotubes are very similar, relatively independent of diameter and chirality of tubes. The calculated dielectric function and loss function spectra show a moderate optical anisotropy with respect to light polarization.  相似文献   

18.
A systematic study of type 1 armchair double-walled SiC nanotubes (DWNTs) (n,n)@(m,m) (3≤n≤6;7≤m≤12) using the finite cluster approximation is presented. The geometries of the tubes have been spin optimized using the hybrid functional B3LYP (Becke’s three-parameter exchange functional and the Lee-Yang-Parr correlation functional) and the all-electron 3-21G* basis set. The study indicates that the stabilities of the double-walled SiC nanotubes are of the same order as those of single-walled SiC nanotubes suggesting the possibilities of experimental synthesis of both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes. The formation energy of the DWNTs is found to be maximum when the interlayer separation is about 3.5 Å. The DWNTs (n,n)@(n+4,n+4) are found to have large formation energies. In particular, (5,5)@(9,9) DWNT is the most stable tube in our study with a binding energy per atom of 5.07 eV, the largest formation energy of 12.39 eV, an interlayer separation of 3.58 Å and a “band gap” of 1.97 eV. All double-walled SiC nanotubes are found to be semiconductors, with the band gaps decreasing from single-walled nanotubes to double-walled nanotubes.  相似文献   

19.
采用基于密度泛函平面波赝势方法(PWP)方法,计算了六角晶系2H-PbI2晶体的电子结构、力学性质和硬度。采用局域密度近似(LDA)方法计算的晶格常数、带隙、弹性常数与实验值和理论值符合较好。计算表明,2H-PbI2是一种直接带隙的半导体,带隙大约为2。38eV。运用复杂晶体硬度计算公式计算了六角晶系2H-PbI2晶体的硬度,硬度值大约为2. 54 GPa。还发现2H-PbI2晶体的各向异性非常明显。  相似文献   

20.
We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in (9,9) carbon nanotube while endothermic in (8,8) and (7,7) carbon nanotubes. When the SiNT is inserted into (9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@(9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and (9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@(7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号