首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of quantum resonances in magnetic scattering by two solenoidal fields at large separation in two dimensions. This system has trapped trajectories oscillating between two centers of the fields. We give a sharp lower bound on resonance widths when the distance between the two centers goes to infinity. The bound is described in terms of backward amplitudes calculated explicitly for scattering by each solenoidal field. The study is based on a new type of complex scaling method. As an application, we also discuss the relation to semiclassical resonances in scattering by two solenoidal fields.  相似文献   

2.
《Chaos, solitons, and fractals》2001,12(14-15):2737-2746
We study a model of cubic interaction between two scalar fields with a scattering resonance. The resonance manifests as two poles of the analytic continuations of the Green function with respect to energy. The Gamow vectors associated to these resonances acquire meaning in suitable rigged Fock spaces. Finally, we discuss some properties of the S-matrix for unstable fields.  相似文献   

3.
In the perturbation theory framework, we compute the cross section of scattering by a magnetic nanocylinder and a helicoid arbitrarily oriented in an external magnetic field. We are the first to obtain the matrix Green’s function for two media with an interface and noncollinear magnetic fields on the two sides of the interface. We show how to compute scattering by magnetic inclusions in one of the media.  相似文献   

4.
5.
The fact that vector potentials have a direct significance to quantum particles moving in magnetic fields is known as the Aharonov–Bohm effect (A–B effect). We study this quantum effect through the semiclassical analysis on total cross sections in the magnetic scattering by two solenoidal (point-like) fields with total flux vanishing in two dimensions. We derive the asymptotic formula with first three terms. The system with two parallel fields seems to be important in practical aspects as well as in theoretical aspects, because it may be thought of a toroidal solenoid with zero cross section in three dimensions under the idealization that the two fields connect at infinity in their direction. The corresponding classical mechanical system has the trajectory oscillating between two centers of fields. The special emphasis is placed on analyzing how the trapping effect from classical mechanics is related to the A–B quantum effect in the semiclassical asymptotic formula. Submitted: September 3, 2006. Accepted: January 10, 2007.  相似文献   

6.
7.
We study the asymptotic behavior of scattering amplitudes for the scattering of Dirac particles in two dimensions when electromagnetic fields with small support shrink to point-like fields. The result is strongly affected by perturbations of scalar potentials and the asymptotic form changes discontinuously at half-integer fluxes of magnetic fields even for small perturbations. The analysis relies on the behavior at low energy of resolvents of magnetic Schrödinger operators with resonance at zero energy. The magnetic scattering of relativistic particles appears in the interaction of cosmic string with matter. We discuss this closely related subject as an application of the obtained results. Communicated by Bernard Helffersubmitted 05/05/03, accepted 31/07/03  相似文献   

8.
Compton scattering in intense magnetic fields in the general frame of reference is studied with the help of the QED perturbation theory in the incoming interaction picture. A general expression for the cross section is derived which reduces naturally to the one in the electron-rest frame of reference. This expression can be approximately simplified for the scattering of a high-energy electron with a low-frequency photon. Based on this simplified expreaaion, spectrum functions, as well as power spectra of scattered photons with high energies resulting from the inverse Compton scattering are calculated which manifest clearly a feature of resonances. Project supported by the National Natural Science Foundation of China (Grant No. 19573008) and the Science Research Division of Shanghai Jiaotong University.  相似文献   

9.
Vector potentials are known to have a direct significance to quantum particles moving in the magnetic field. This is called the Aharonov–Bohm effect and is known as one of the most remarkable quantum phenomena. Here we study this quantum effect through the resonance problem. We consider the scattering system consisting of two scalar potentials and one magnetic field with supports at large separation in two dimensions. The system has trajectories oscillating between these supports. We give a sharp lower bound on the resonance widths as the distances between the three supports go to infinity. The bound is described in terms of the backward amplitude for scattering by each of the scalar potentials and by the magnetic field, and it also depends heavily on the magnetic flux of the field.  相似文献   

10.
We consider a charged particle following the boundary of a two dimensional domain because a homogeneous magnetic field is applied. We develop the basic scattering theory for the corresponding quantum mechanical edge states. The scattering operator attains a limit for large magnetic fields which preserves Landau bands. We interpret the corresponding scattering phases in terms of classical trajectories. Communicated by Yosi Avron submitted 23/02/05, accepted 3/05/05  相似文献   

11.
We consider the inverse scattering problem of determining both the shape and some of the physical properties of the scattering object from a knowledge of the (measured) electric and magnetic fields due to the scattering of an incident time-harmonic electromagnetic wave at fixed frequency. We shall discuss the linear sampling method for solving the inverse scattering problem which does not require any a priori knowledge of the geometry and the physical properties of the scatterer. Included in our discussion is the case of partially coated objects and inhomogeneous background. We give references for numerical examples for each problem discussed in this paper.  相似文献   

12.
We show that ergodic automorphisms of solenoids are isomorphic to Bernoulli shifts by using the product formula for global fields. The authors gratefully acknowledge support by the Mathematical Sciences Research Institute. The first author was supported in part by NSF Grant DMS-9004253.  相似文献   

13.
We extend the method of Pizzo multiscale analysis for resonances introduced in [5] in order to infer analytic properties of resonances and eigenvalues (and their eigenprojections) as well as estimates for the localization of the spectrum of dilated Hamiltonians and norm-bounds for the corresponding resolvent operators, in neighborhoods of resonances and eigenvalues. We apply our method to the massless Spin–Boson model assuming a slight infrared regularization. We prove that the resonance and the ground-state eigenvalue (and their eigenprojections) are analytic with respect to the dilation parameter and the coupling constant. Moreover, we prove that the spectrum of the dilated Spin–Boson Hamiltonian in the neighborhood of the resonance and the ground-state eigenvalue is localized in two cones in the complex plane with vertices at the location of the resonance and the ground-state eigenvalue, respectively. Additionally, we provide norm-estimates for the resolvent of the dilated Spin–Boson Hamiltonian near the resonance and the ground-state eigenvalue. The topic of analyticity of eigenvalues and resonances has let to several studies and advances in the past. However, to the best of our knowledge, this is the first time that it is addressed from the perspective of Pizzo multiscale analysis. Once the multiscale analysis is set up our method gives easy access to analyticity: Essentially, it amounts to proving it for isolated eigenvalues only and use that uniform limits of analytic functions are analytic. The type of spectral and resolvent estimates that we prove are needed to control the time evolution including the scattering regime. The latter will be demonstrated in a forthcoming publication. The introduced multiscale method to study spectral and resolvent estimates follows its own inductive scheme and is independent (and different) from the method we apply to construct resonances.  相似文献   

14.
We study quantum scattering on manifolds equivalent to the Euclidean space near infinity, in the semiclassical regime. We assume that the corresponding classical flow admits a non-trivial trapped set, and that the dynamics on this set is of Axiom A type (uniformly hyperbolic). We are interested in the distribution of quantum resonances near the real axis. In two dimensions, we prove that, if the trapped set is sufficiently “thin”, then there exists a gap between the resonances and the real axis (that is, quantum decay rates are bounded from below). In higher dimension, the condition for this gap is given in terms of a certain topological pressure associated with the classical flow. Under the same assumption, we also prove a resolvent estimate with a logarithmic loss compared to non-trapping situations.  相似文献   

15.
The problem under consideration is that of the scattering of time periodic electromagnetic fields by metallic obstacles. A common approximation here is that in which the metal is assumed to have infinite conductivity. The resulting problem, called the perfect conductor problem, involves solving Maxwell's equations in the region exterior to the obstacle with the tangential component of the electric field zero on the obstacle surface. In the interface problem different sets of Maxwell equations must be solved in the obstacle and outside while the tangential components of both electric and magnetic fields are continuous across the obstacle surface. Solution procedures for this problem are given. There is an exact integral equation procedure for the interface problem and an asymptotic procedure for large conductivity. Both are based on a new integral equation procedure for the perfect conductor problem. The asymptotic procedure gives an approximate solution by solving a sequence of problems analogous to the one for perfect conductors.  相似文献   

16.
This paper deals with the behaviour of k‐outgoing solutions of ?Δu?k2u=f outside a fading soft obstacle. We extend an approach using the so‐called Lax–Phillips construction and the well‐known properties of the capacity of smooth obstacles. So, classical results are recovered in a straightforward manner. The previous approach enables us to consider the case of obstacles composed of many tiny spheres. Roughly speaking, we prove that the scattering amplitude is approximately the sum of the scattering amplitudes scattered by each isolated sphere, which is an alternative form of the first Born approximation. As a consequence, two inverse problems are solved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Acoustic scattering by bounded obstacles is considered, in both two and three dimensions. Relations between the T-matrix and the far-field pattern are derived, and then used to obtain new approximations for the T-matrix for small obstacles. The problem of scattering by a pair of small sound-soft circular cylinders is also solved, in the Rayleigh approximation, using bipolar coordinates.  相似文献   

18.
In this paper, boundary integral formulations for a time‐harmonic acoustic scattering‐resonance problem are analyzed. The eigenvalues of eigenvalue problems resulting from boundary integral formulations for scattering‐resonance problems split in general into two parts. One part consists of scattering‐resonances, and the other one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior of the scatterer. The proposed combined boundary integral formulations enable a better separation of the unwanted spectrum from the scattering‐resonances, which allows in practical computations a reliable and simple identification of the scattering‐resonances in particular for non‐convex domains. The convergence of conforming Galerkin boundary element approximations for the combined boundary integral formulations of the resonance problem is shown in canonical trace spaces. Numerical experiments confirm the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We are interested in solving the inverse problem of acoustic wave scattering to reconstruct the position and the shape of sound-hard obstacles from a given incident field and the corresponding far field pattern of the scattered field. The method we suggest is an extension of the hybrid method for the reconstruction of sound-soft cracks as presented in [R. Kress, P. Serranho, A hybrid method for two-dimensional crack reconstruction, Inverse Problems 21 (2005) 773–784] to the case of sound-hard obstacles. The designation of the method is justified by the fact that it can be interpreted as a hybrid between a regularized Newton method applied to a nonlinear operator equation with the operator that maps the unknown boundary onto the solution of the direct scattering problem and a decomposition method in the spirit of the potential method as described in [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Cannon, Hornung (Eds.), Inverse Problems, ISNM, vol. 77, 1986, pp. 93–102. Since the method does not require a forward solver for each Newton step its computational costs are reduced. By some numerical examples we illustrate the feasibility of the method.  相似文献   

20.
We consider the scattering of a particle injected into a system of three coplanar potentials that give rise to inverse square law repulsive forces. Most of the parameter space defined by the combination of injection energy and impact parameter is found to be associated with geometrically simple input–output trajectories. These regions in parameter space are separated by narrow ridges which correspond to chaotic scattering. Experimental data are also reported for the scattering of a magnetic puck propelled into the domain of three fixed magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号