首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.  相似文献   

2.
The formation of micelles in aqueous mixtures of a carbohydrate-based bolaamphiphile and sodium dodecyl sulfate (SDS) is investigated by surface tension and small-angle neutron scattering. The obtained values of critical micelle concentration (CMC) are analyzed within the framework of regular solution theory. Synergetic interactions between the bolaamphiphile and SDS are observed (parameter beta is negative; a minimum in the plot CMC vs composition). SANS data are collected for mixtures containing protonated and deuterated SDS. This gives us the possibility to conclude that mixed micelles with a homogeneous distribution of surfactant molecules within the micelle are formed. The shape of the micelles is found to be slightly oblate.  相似文献   

3.
Micelle formation behavior of sodium salts of fatty acids containing double bond at the chain end, sodium 10-undecenoate (Na-10-U) and sodium 8-nonenoate (Na-8-N), was examined with measurement of electric conductivity of their aqueous solutions, and the plot of the electric conductivity against the concentration for each fatty acid was found to show two break points; at 0,044 and 0,12mol/1 for Na-10-U and at 0,16 and 0,44 mol/1 for Na-8-N. The similar behaviors of the aqueous solutions were also found with the measurements of the maximum amount of solubilized benzene into the aqueous solution and of the solution viscosity, and the concentrations corresponding to the break points were assumed to be first and second critical micelle concentrations (CMC's), respectively. Polymerization of the sodium salts under irradiation with UV light was investigated. For each fatty acid, the amount of the obtained polymer was very small at very low concentrations of the fatty acid, but it increased rapidly with increasing concentration of the monomer at concentrations higher than the first CMC and then mildly at the concentrations higher than the second CMC. Number-average degrees of polymerization of the polymers obtained were measured with a gel permeation chromatography technique and found to be up to 13 for Na-10-U and 8,5 for Na-8-N.  相似文献   

4.
通过电导法考查温度和盐浓度对十二烷基硫酸钠(SDS)临界胶束浓度(CMC)的影响,研究表面活性剂形成胶束过程的物理化学性质。根据拟相分离模型求得胶束化热力学函数,并讨论体系电导活化能随温度和SDS浓度变化关系。结果表明:SDS的CMC随温度升高而增加,随氯化钠浓度增大而减小。在热力学上SDS在水溶液中形成胶束是一个自发、放热、熵增的过程;在动力学上,SDS溶液电导率与温度关系符合Arrhenius公式,通过电导活化能信息可揭示离子型表面活性剂形成胶束的机理特征。  相似文献   

5.
Measurements have been made to determine the solubility of ethane, C2H6, in aqueous solutions of four different surfactants of the linear alkanesulfonate class at 25 degrees C. The surfactants, sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, and sodium 1-octanesulfonate, all share a common head group (-SO-3) and counter ion (Na+), and differ only in the length of the alkyl chain attached to the head group. The solubility of ethane has been determined as a function of surfactant concentration for each surfactant. At surfactant concentrations below the critical micelle concentration (CMC), the solubility of ethane is quite low and differs only slightly from the solubility of ethane in pure water. At concentrations greater than the CMC, the solubility of ethane exhibits a gradual increase with surfactant concentration. At high surfactant concentrations, well in excess of the CMC, the solubility of ethane is found to increase as a linear function of surfactant concentration. From this data it becomes possible to determine the fractional population of the surfactant in the free and micellized states. The solubility data measured for ethane is interpreted in terms of the mass-action model for micelle formation.  相似文献   

6.
The critical micelle concentration (CMC) has been determined for the gemini surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium bromide)12-s-12,2Br?1 by means of electricity conductivity measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic head group, geminis have CMC values well below those of conventional single-chain cationic surfactants. The CMC of 12-3-12 reduces with the addition of n-alcohol except ethanol and with the increase of n-alcohol chain length as well as increase of concentration of n-butanol and sodium chloride. Steady-state fluorescence quenching technology has been employed to study the aggregation number of micelle, which increases with increase in the length of n-alcohol. The Kraft temperature measurements also indicate that the stability of solid surfactant hydrate decreases along with the improvement of concentration of n-butanol and sodium chloride.  相似文献   

7.
Surface tension and conductivity measurements were used to study micelle formation in an aqueous solution of decylpyridinium chloride at 20, 25, 30, 35, and 40°C. The critical micelle concentration (CMC) was minimum at about 30–35°C. After CMC1, aggregation with CMC2 and CMC3 occurred as the concentration increased.  相似文献   

8.
Micelle formation of N-(1,1-dihydroperfluorooctyl)-N,N,N- and N-(1,1-dihydroperfluorononyl)-N,N,N-trimethylammonium chloride was investigated by analyzing the concentration dependence of the electric conductivity and of the activity of the counterion (Cl(-)) of the solution. The three micellization parameters for ionic surfactants, the micellization constant K(n), the micelle aggregation number n, and the number of counterions per micelle m, were determined by combination of electric conductivity and counterion concentration. The present analysis employed two slopes of the plots of specific conductivity against surfactant concentration below and above the critical micelle concentration and the mass action model of micelle formation. The aggregation numbers thus obtained were relatively small, while the degrees of counterion binding to the micelle (m/n) were found to be quite large, much larger than expected from the small aggregation numbers. Thermodynamical parameters of the micellization were evaluated from the temperature dependence of the three parameters, and the micellization of the fluorinated surfactant was found to be enthalpy-driven. A CF(2) group in the perfluorocarbon chain was found to be 1.44 times larger in hydrophobicity for micellization than a CH(2) group in the hydrocarbon chain.  相似文献   

9.
The micellar behaviour of similar hydrophobic chain length conventional (cetyltrimethyl ammonium bromide, CTAB; cetyl pyridinium chloride, CPC; cetyldimethylbenzyl ammonium chloride, C16BCl) and gemini surfactant (16-2-16) in water and polar non-aqueous solvents has been investigated in the temperature range 288.15–318.15 K with the help of conductivity measurements. The method proposed by Carpena et al. has been used to analyse the conductivity–concentration to determine the micellization parameters using critical micelle concentration (CMC) and degree of counter-ion dissociation (α) of the micelle. It shows much better performance than the conventional methods and the effect of experimental errors on the evaluation of the micellization parameters has been shown to be minimal by using this procedure. It was observed that the micellization tendency of the surfactant decreases in the presence of solvents. Thermodynamic parameters were also evaluated from the temperature dependence of the CMC values.  相似文献   

10.
In this study the mixed micelle behavior of an alkyl polyglycoside is compared to a surfactant of polyoxyethylene type, by means of surface tension measurements. The two nonionic surfactants are compared in mixed micelle systems together with an anionic surfactant. The surfactant mixtures are: decyl-beta-maltoside (C(10)M) with dodecyl benzenesulfonate (C(12)BS) and octaethyleneglycol mono n-decyl ether (C(10)EO(8)) with C(12)BS. The mixture of C(10)M and C(10)EO(8) is also studied. Critical micelle concentration (CMC) and the concentration at which the surface tension reduction is 20 mNm(-1) (C(20)) are determined at different mixing ratios of the surfactant mixtures. By applying the nonideal mixed micelle theory, interaction parameters at CMC (beta(CMC)) and C(20) (beta(C20)) are calculated for the surfactant mixtures. The results show that the C(10)M-C(12)BS mixture has a beta(CMC) parameter of -2.1, whereas the beta(CMC) parameter for the C(10)EO(8)-C(12)BS mixture is -3.3, indicating a weaker net attractive interaction between C(10)M and C(12)BS than between C(10)EO(8) and C(12)BS. This is attributed to a small negative and positive charge of the respective nonionic surfactants. This is supported by a slightly negative beta(CMC) parameter obtained for the surfactant mixture C(10)M-C(10)EO(8), indicating a small net attractive interaction between the two nonionic surfactants. Copyright 2000 Academic Press.  相似文献   

11.
The solubility of ethylene in aqueous solutions of sodium dodecyl sulfate (SDS) at different concentrations was measured at temperature 298.2 K and near the hydrate formation region. The effect of SDS on the gas solubility was studied and the solubilities of ethylene in a single micelle under different conditions were evaluated. It was found that the micelle solubilization was obvious, especially in the region near hydrate formation conditions. The CMC of SDS solution was also evaluated based on the solubility vs SDS concentration curves and it was found that it decreased with decreasing temperature.  相似文献   

12.
The critical micelle concentration (CMC) of four kinds of metallosurfactants of the type halogeno(dodecyl/cetylamine)‐bis(ethylenediamine)cobalt(III) has been studied in n‐alcohol and in formamide at different temperatures by electrical conductivity method. Specific conductivity data (at 293–313 K) served for the evaluation of temperature‐dependent CMC and the thermodynamic parameters such as standard Gibbs free energy changes (ΔG), enthalpies (ΔH), and entropies (ΔS) of micelle formation. CMCs have also been measured as a function of percentage concentration of alcohol added. It is suggested that alcohol addition leads to increase in formamide penetration into micellar interface that depends on the alcohol chain length. The results have been discussed in terms of increased hydrophobic effect (solvophobic interaction), dielectric constant of the medium, and the chain length of the alcohols, the surfactant in the solvent mixture. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 22–31, 2007  相似文献   

13.
利用共振光散射技术在不引入探针的条件下,建立了室温下直接测定十二烷基苯磺酸钠(SDBS)的临界胶束浓度(CMC)的方法.研究发现:在室温下,SDBS水溶液的共振光散射强度(RLS)随SDBS浓度的增加而增强;且当SDBS接近其临界胶束浓度时,RLS强度增强显著,共振光散射峰分别位于330和396 nm.396 nm处的RLS强度与SDBS浓度关系曲线呈S型曲线,本文将曲线突升起点处两条切线的交点对应的SDBS浓度,确定为SDBS的临界胶束浓度(CMC),这与荧光芘探针和电导率等方法测定结果基本一致.并利用此方法分别研究了Ca2+浓度对SDBS及其SDBS-聚乙二醇辛基苯基醚(OP)复配体系聚集行为的影响.结果表明,SDBS与OP以1∶ 3复配时,增强了体系的抗钙能力.  相似文献   

14.
Association processes in aqueous solutions of octyltrimethylammonium bromide, C(8)TAB, have been studied in aqueous NaBr solutions at temperatures from 20 to 55 degrees C. The values of the critical micelle concentration, CMC, were determined from the intersections of two straight line portions of the plots of the relationship between adiabatic compressibility of the solutions and surfactant concentration. The value of the CMC thus determined exhibits minima at a certain temperature, T(min). The value of T(min) shifts toward a lower temperature with increasing NaBr concentration. Based on the most probable micelle size model, the values of thermodynamic functions of micelle formation have been estimated at various temperatures. Copyright 2001 Academic Press.  相似文献   

15.
Micelles formed in water from ammonium dodecyl sulfate (AmDS) are characterized using time-resolved fluorescence quenching (TRFQ), electron paramagnetic resonance (EPR), conductivity, Krafft temperature, and density measurements. TRFQ was used to measure the aggregation number, N, and the quenching rate constant of pyrene by dodecylpyridinium chloride, k(Q). N depends only on the concentration (C(aq)) of ammonium ions in the aqueous phase whether these counterions are derived from the surfactant alone or from the surfactant plus added ammonium chloride as follows: N = N0(C(aq)/cmc0)(gamma), where N0 is the aggregation number at the critical micelle concentration in the absence of added salt, cmc0, and is equal to 77, 70, and 61 at 16, 25, and 35 degrees C, respectively. The exponent gamma = 0.22 is independent of temperature in the range 16 to 35 degrees C. The fact that N depends only on C(aq) permits the determination of the micelle ionization degree (alpha) by employing various experimental approaches to exploit a recent suggestion (J. Phys. Chem. B 2001, 105, 6798) that N depends only on C(aq). Utilizing various combinations of salt and surfactant, values of alpha were obtained by finding common curves as a function of C(aq) of the following experimental results: the Krafft temperature, N, k(Q), the microviscosity of the Stern layer determined from the rotational correlation time of a spin probe, 5-doxyl stearic acid methyl ester, and the spin-probe sensed hydration of the micelle surface. The values of alpha, determined from applying the aggregation number-based definition of alpha to all of these quantities, were within experimental uncertainty of the values alpha = 0.19, 0.20, and 0.21 derived from conductivity measurements at 16, 25, and 35 degrees C, respectively. The volume fraction of the Stern layer occupied by water decreases as N increases. For AmDS micelles, both the hydration and its decrease are predicted by a simple theory of micelle hydration by fixing the parameters of the theory for sodium dodecyl sulfate and employing no further adjustable parameters. For a given value of N, the hydration decreases as the temperature increases.  相似文献   

16.
The synthesis of hybrid particles was carried out by emulsion polymerization of styrene in complexes formed by carboxymethyl cellulose (CMC), a polyanion, and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). CMC chains with variable molecular weights and degrees of substitution were tested. The polymerization condition chosen was that corresponding to CMC chains fully saturated with CTAB and to the onset of pure surfactant micelle formation, namely, at the critical aggregation concentration. The hybrid particles were characterized by zeta potential and light scattering measurements. The period of colloidal stability in the ionic strength of 2.0 mol L(-)(1) NaCl was observed visually. Upon increasing the CMC chain length, the particle characteristics remained practically unchanged, but the colloid stability was increased. The increase in the CMC degree of substitution led to particles with more negative zeta potential values. The adsorption of copper ions (Cu(2+)) on the surface of hybrid particles could be described by the Langmuir model, as determined by potentiometric measurements. The increase in the mean zeta potential values and X-ray absorption near-edge spectra evidenced the immobilization of Cu(2+) ions on the hybrid particles.  相似文献   

17.
The micellization of the ionic liquid N-alkyl-N-methylpyrrolidinium bromide (C(n)MPB, n = 12, 14 and 16) in aqueous solutions was investigated by surface tension measurements, electrical conductivity and static luminescence quenching. The effectiveness of the surface tension reduction (Π(cmc)), maximum surface excess concentration (Γ(max)) and the minimum area (A(min)) occupied per surfactant molecule at the air/water interface can be obtained from the surface tension measurements at 25 °C. The critical micelle concentration (cmc) at different temperatures and a series of thermodynamic parameters (ΔG, ΔH and ΔS) of micellization were evaluated from electrical conductivity measurements in the temperature range of 25-45 °C. The thermodynamic parameters show that the micelle formation is entropy-driven at low temperature and enthalpy-driven at high temperature. Furthermore, the micelle aggregation number (N(agg)) of C(n)MPB was calculated according to the Turro-Yekta method through static luminescence quenching and found that N(agg) (49, 55, and 59) increased with the hydrophobic chain length of C(n)MPB.  相似文献   

18.
Charge in ionic micelles determines the trends of their stability and their practical applications. Charge can be calculated from zeta potential (zeta) measurements, which, in turn, can be obtained by Doppler microelectrophoresis. In this study, the electrophoretic properties of dodecyltrimethylammonium bromide (DTAB) in KBr aqueous solution (0-6 mM) were determined by Doppler microelectrophoresis. At very low surfactant concentrations (up to 6 mM), zeta potential was quite constant and due to the ionized monomers (DTA+). Above 6 mM, zeta potential increased to a maximum at surfactant concentrations still below the critical micellar concentration (CMC). This increase could be explained by a formation of nonmicellar aggregates of DTAB. Then, above the CMC, zeta potential underwent an abrupt reduction, which was dependent qualitatively and quantitatively on KBr concentration, and which could be due to an increase of the number of counterions adsorbed on the micelle surface. Calculation of effective micellar charge from zeta potential gave the surface charge density. Comparing this value with the theoretical, obtained from geometrical considerations, a fraction of 0.29 of charged micellar headgroups was obtained when DTAB was in aqueous solution, which is consistent with the value obtained by conductivity measurements.  相似文献   

19.
The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.  相似文献   

20.
Inorganic salts usually influence water structure affecting the hydration of the molecules which lead to a salting-in or a salting-out effect of hydrophobic compounds. Specific conductivity and isothermal titration calorimetry have been used to study the effect of inorganic salts on aggregation of the cationic surfactant 1-decyl-3-methylimidazolium chloride in aqueous solutions. The effect of the concentration, the nature of the anion and temperature on micelle formation were studied. A decreasing critical micelle concentration (CMC) due to the weakening electrostatic repulsion between the headgroups was observed. The salts used in this investigation decreased the CMC and degree of micelle ionization in the order of Cl(-)相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号