首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract—The induction process of UV-enhanced reactivation of UV-irradiated herpes simplex virus was investigated in CV-1 monkey kidney cells. A protein synthesis inhibitor, cycloheximide (0.5–5 μg/m/), present in the culture medium For 24 h between cell irradiation and virus infection decreased the enhanced virus survival normally found in UV-irradiated cultures. The enhanced virus reactivation became essentially resistant to the addition of cycloheximide by 6–8 h after cell irradiation, indicating that the cycloheximide-sensitive process necessary for enhanced reactivation was complete by that time. Since cycloheximide not only inhibits protein synthesis, but DNA synthesis as well, we investigated the effect of a DNA synthesis inhibitor, hydroxyurea. Hydroxyurea did not decrease UV-enhanced virus survival, but resulted in enhanced virus survival even in unirradiated cells. Therefore, the cycloheximide-caused inhibition of UV-enhanced reactivation did not arise from inhibition of DNA synthesis. The combined results indicate that (1) UV-enhanced virus reactivation in monkey kidney cells requires de novo protein synthesis during the first 6–8 h after cell irradiation and that (2) DNA synthesis inhibition may be the initiating event.  相似文献   

2.
Abstract— UV-enhanced reactivation of minute-virus-of-mice (MVM), an autonomous parvovirus, was studied in parasynchronous mouse A9 cells. The survival of UV-irradiated MVM is increased in cells which have been UV-irradiated prior to infection. UV-enhanced reactivation can be explained neither by facilitated plaque detection on UV-treated indicator cells, nor by altered kinetics of virus production by UV-irradiated cells. No effect of the multiplicity of infection on virus survival was detected in unirra-diated or irradiated cells. The magnitude of UV-enhanced reactivation is a direct exponential function of the UV dose administered to the virus while virus survival is inversely proportional to the UV dosage. The expression of UV-enhanced reactivation can be activated in cells arrested in G0, it requires de novo protein synthesis and it is maximal when cells are irradiated 30 h before the onset of viral DNA replication. Early phases of the viral cycle, such as adsorption to cellular receptors, migration to the nucleus and uncoating, were not affected by cell irradiation and are unlikely targets of the UV-enhanced reactivation function(s). These results, together with the single-strandedness of the viral genome, strongly suggest that the step stimulated in UV-irradiated cells functions concomitant with, or subsequent to, viral DNA replication.  相似文献   

3.
Abstract— Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle? The answer could be useful for interpreting UVER and/or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-1 monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D0's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G1/early S phase or late S/early G2 phase but not during early G1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle; and (2) the “induction” of UVER is not as rapid for cell-irradiation in early G1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells.  相似文献   

4.
Abstract— When CV-1 monkey kidney cells were UV-irradiated (0–18 J/m2) or X-irradiated (0–10krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3–5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus.  相似文献   

5.
Abstract— Herpes simplex virus (HSV) macroplaque strain plaque development is faster on ultraviolet (UV)-irradiated African green monkey kidney cells if viral infection is delayed for 12 h or more after cell irradiation (Coohill et al. , 1980). This phenomenon has been termed the large plaque effect (LPE). Here we show that treatment of UV-irradiated cells with cycloheximide inhibits the LPE. Pretreatment of unirradiated cells with hydroxyurea, caffeine, or acetoxy-acetylaminofluorene results in faster plaque development. Treatment of UV-irradiated cells with either hydroxyurea or caffeine gave a LPE of the same magnitude as UV alone. In addition, the LPE was observed with other HSV strains—microplaque, syn-20, and KOS. Our results are consistent with the interpretation that the LPE is 'inducible' in African green monkey kidney cells and that inhibition of DNA synthesis is the inducing event. Possible causes of the LPE and similarities between the LPE and enhanced viral reactivation are discussed.  相似文献   

6.
C3H/10T1/2 mouse fibroblasts were grown to different cell densities either by plating at low density and allowing different growth periods, or by plating at a series of increasing densities and allowing the same growth period. These plates were UV irradiated at 7.5 J/m2 or mock irradiated and 24 h later infected with UV-irradiated Herpes simplex type I virus which had been UV irradiated at 50 or 125 J/m2 or mock irradiated. The numbers and sizes of plaques were measured and these data used to calculate the extent of UV-enhanced host cell reactivation, the capacity enhancement, the large plaque effect (LPE) and the small plaque effect (SME). The influence of cell density on these phenomena was similar for both series of density experiments. Ultraviolet-enhanced host cell reactivation could be demonstrated only for cultures of lower density. The capacity of the cells for Herpes simplex type I virus decreased with cell density, but UV irradiated cells showed an increase in capacity with cell density. Plaque sizes decreased in all cases with cell density but the LPE and SPE were not significantly altered. The greatest variation in the above parameters occurred just as the cells were approaching confluence, where most host cell reactivation experiments are carried out. We conclude that the reproducibility of such experiments depends critically on cell density, a dependence which may be relevant to mechanistic interpretations of the UV-dependent phenomena.  相似文献   

7.
— Herpes simplex virus — type 1 (HSV-I) plaque-forming ability and plaque size were measured on C3H/1OT1/2 cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus. as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others. C3H/l0T1/2 cells have hcen transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation.  相似文献   

8.
Abstract— Enhanced reactivation of UV- and y-irradiated herpes virus was investigated by the plaque assay onCV–1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiatedCV–1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for y-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. It is demonstrable that the UV- or X-irradiatedCV–1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of y-ray damaged ones.  相似文献   

9.
10.
Abstract— The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus grown in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes simplex.  相似文献   

11.
Abstract— The photoreactivation rate of U.V. irradiated phages is decreased in u.v. irradiated bacteria. In contrast, the normal photoreactivation rate is observed if the irradiated bacteria are photoreactivated before phage infection. The decrease of the photoreactivation ratc is understood as a competing effect of the u.v. lesions in the bacterial nucleic acids for the photoreactivation enzyme. This competitive inhibition can be diminished not only by photoreactivation of the bacteria before phage infection but also by hostcell reactivation of the u.v. lesions in the bacterium. The results provide strong evidence that hostcell reactivation and photoreactivation revert the same u.v. photoproducts in bacterial nucleic acids. The experiments show that the hostcell reactivation enzyme is not induced by phage infection or by irradiation, but is normally present in the bacterial cell.  相似文献   

12.
Abstract The susceptibility of bacteriophage damaged by solar-ultraviolet (UV, 290-380 nm) radiations at denned wavelengths and by radiation at a visible wavelength (405 nm) to the Weigle reactivation system induced by far-UV (254 nm) irradiation of the host cell has been studied in a repair competent strain of Escherichia coli . The sector of inducible repair diminishes with wavelength, being very small after 313 nm irradiation and absent after irradiation at longer wavelengths. However, irradiation of bacteria at wavelengths as long as 313 nm induces a bacteriophage reactivation system as effectively as radiation at 254 nm in both the repair competent and an excision deficient host cell. At longer wavelengths pre-irradiation of the repair competent host cell enhances reactivation of 254 nm irradiated bacteriophage but the reactivation is smaller and the process quite distinct from that induced in the 254-313 nm region. We conclude that, with increasing wavelength, damage induced by solar UV radiations becomes increasingly less susceptible to repair systems induced by far-UV (pyrimidine dimers) and that this type of inducible repair system is no longer induced by wavelengths longer than 313 nm.  相似文献   

13.
Abstract Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), we have examined Simian virus 40 DNA replication in carcinogen-treated cells. We find that treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [3H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possibility that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. We conclude from these studies that ER of Simian virus 40 occurs at the level of viral DNA replication.  相似文献   

14.
Abstract— UV-induced alkaline labile viral DNA damage was detected following irradiation of adenovirus type 2 and found to be repaired following the infection of human KB cells. Human adenovirus type 2 was irradiated with various doses of UV and subsequently used to infect human KB cells in tissue culture at approximately 2 × 103 particles per cell. Before, and at various times after infection, the viral DNA was examined on alkaline sucrose gradients. Irradiated free virus DNA showed a dose dependent decrease in molecular weight compared to unirradiated virus DNA, indicating the presence of UV-induced alkaline labile lesions. Furthermore, an increase in the molecular weight of the irradiated virus DNA was found after infection indicating that alkaline labile lesions were removed from the viral DNA by a host mediated repair mechanism. After infection, the molecular weight of the irradiated virus DNA reached a value similar to that of unirradiated virus DNA for all the UV doses studied.  相似文献   

15.
Herpes simplex virus (HSV) normally causes vescular lesions on mucocutaneous surfaces but can also cause encephalitis. The virus can reactivate from the latent state in neurons to form recrudescent lesions. One common stimulus for reactivation is exposure to sunlight. In the present study, the effects of irradiating rats with suberythemal ultraviolet (UV) before or after infecting them epidermally with HSV was investigated. Preexposure to UV impaired HSV-specific cellular immune responses, as indicated by delayed type hypersensitivity (DTH) and in vitro lymphoproliferation assays. However, the number and severity of the skin lesions were not altered. In contrast, exposure after infection did not affect cellular immunity but resulted in a large increase in the severity and number of lesions. In a second series of experiments, the effects of preirradiating with UV on HSV infection was examined using a route of inoculation which was not skin-associated, namely intranasal, allowing direct non-invasive access to the nervous system. It was found that suppressed DTH resulted, together with an increase in the incidence and severity of neurological symptoms and an increased viral load in the brain. Therefore, unlike the situation in the skin, irradiation of rats before intranasal inoculation led to a suppressed immune response to HSV which correlated with increased viral load and symptoms. These results indicate that the effects of UV may be dependent on whether the animal is exposed before or after the infection, and whether the infection is skin-associated or systemic.  相似文献   

16.
The biological effectiveness of thymine-thymine cyclobutane dimers specifically induced by photosensitized ultraviolet-B irradiation was analyzed by host-cell reactivation of triplet-sensitized, UV-B irradiated plasmid pRSV beta gal DNA transfected into normal and repair-deficient Chinese hamster ovary cells. For comparison, pRSV beta gal DNA was also UV-C irradiated and transfected into the same cell lines. Ultraviolet endonuclease-sensitive site induction was determined after UV-C irradiation or acetophenone-sensitized UV-B irradiation of plasmid pRSV beta gal DNA. These data were used to calculate the number of cyclobutane pyrimidine dimers required to inactivate expression of the lacZ reporter gene in each irradiation condition. Transfection with UV-C-irradiated plasmid DNA resulted in a significantly greater reduction of reporter gene expression than did transfection with acetophenone-sensitized UV-B-irradiated pRSV beta gal DNA at equivalent induction of enzyme-sensitive sites. Since only a fraction of the inhibition could be accounted for by noncyclobutane dimer photoproducts, these results suggest that cytosine-containing pyrimidine cyclobutane dimers may be more effective than thymine-thymine dimers in inhibiting transient gene expression as measured in such host-cell reactivation experiments in mammalian cells.  相似文献   

17.
18.
Oral administration of green tea or caffeine to SKH-1 mice during UVB irradiation for several months inhibited the formation of skin cancer. Similar effects were observed when green tea or caffeine was given to tumor-free UVB-initiated mice with a high risk of developing skin tumors in the absence of further UVB irradiation (high risk mice). Mechanistic studies indicated that topical application of caffeine stimulated UVB-induced apoptosis as well as apoptosis in UVB-induced focal hyperplasia and tumors in tumor-bearing mice. Oral or topical administration of caffeine enhanced the removal of patches of epidermal cells with a mutant form of p53 protein that appeared early during the course of UVB-induced carcinogenesis, and oral administration of caffeine altered the profile of p53 mutations in the patches. In additional studies, topical application of caffeine was shown to have a sunscreen effect, and topical application of caffeine sodium benzoate was more active than caffeine as a sunscreen and for stimulating UVB-induced apoptosis. Caffeine sodium benzoate was also highly active in inhibiting carcinogenesis in UVB-pretreated high risk mice. Our studies indicate that caffeine and caffeine sodium benzoate may be useful as novel inhibitors of sunlight-induced skin cancer.  相似文献   

19.
We have developed a model of cutaneous herpes simplex virus-1 (HSV-1) reactivation in SKH-1 hairless mice which closely mimics the condition in humans. Sixty plaque-forming units of HSV-1 strain 17 syn+ were applied to a superficially abraded area on the lateral body wall. More than 85% of mice developed primary HSV-1 infection characterized by a zosteriform pattern of cutaneous vesiculation and ulceration. Approximately one-third of mice with primary skin lesions succumbed to neurologic disease and in the remaining mice cutaneous lesions healed completely. Subsequent exposure of healed areas to two minimal inflammatory doses of UV resulted in recrudescence of skin lesions in the irradiated areas in almost 60% of mice. Lesions appeared approximately 4 days after irradiation, persisted for 3-5 days and then resolved completely. Reactivation rarely resulted in death due to neurologic disease. Primary lesions had a histologic appearance typical of cutaneous HSV-1 infection with vesicles and focal epithelial necrosis accompanied by the formation of epithelial syncytial cells and the presence of herpetic intranuclear inclusion bodies. In primary lesions HSV-1 was demonstrated by immunohistochemistry, polymerase chain reaction and culture. In reactivated lesions epithelial syncytia and inclusion bodies were not seen; however, virus was demonstrable by polymerase chain reaction and culture. Exposure of the uninfected side to UV did not stimulate disease recurrence suggesting that local effects of UV rather than systemic immunosuppression were responsible for reactivation. Reactivation could also be obtained with two minimal inflammatory doses of UV from a UV-340 light source which emits light approximating the solar spectrum.  相似文献   

20.
Abstract. Data are presented showing that the inactivation response of exponential phase Escherichia coli to 313 nm irradiation is affected by previous storage of cells at 3°C in M9 buffer. A similar effect of cold storage on the far-UV inactivation response was not observed. Cold storage alone causes exponential loss in cell viability. After 0.95 days, cell viability is only about 15% of that observed immediately after exposure of cells to cold incubation. However, irradiation at 313 nm causes reactivation of these cold-inactivated bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号