首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.  相似文献   

2.
Core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles were synthesized by mixing Fe(CO)(5) and Cr(CO)(6) in the 9:1 ratio. These particles exhibit narrow size distribution with 13.5 nm as mean diameter and uniform spherical shape. The TEM image, which is in good agreement with the synchrotron powder XRD pattern, reveals the heterogeneous nature (core/shell structure). The analysis of the pattern reveals gamma-Fe(2)O(3) structure and a metal crystal structure. Mossbauer spectra, which support the superparamagnetic behavior determined by H-M measurement, do not show any traceable amount of Fe(0). This suggests that the metal component is Cr. EELS analysis and iron mapping suggest controlled stoichiometry and also confirm a core made of Cr and a shell made of gamma-Fe(2)O(3).  相似文献   

3.
Highly crystalline gamma-Fe(2)O(3) nanoparticles with narrow size distributions that are coated with 1-undecanesulfonic acid were synthesized via two distinct approaches using oxidation and site-exchange reactions. However, similar nanocrystals protected with 1-octanol could only be achieved via the site-exchange method, while the oxidation approach led to Fe(2)O(3) nanoparticles of poor crystallinity and size uniformity. Our magnetization measurements confirmed the superparamagnetic nature of our Fe(2)O(3) nanoparticle products and the effects of the coating materials on magnetization properties.  相似文献   

4.
Here we report on a mixed oxide system, gamma-Fe2O3 nanoparticles doped with Mn(III), where the transition from the cubic to the more stable hexagonal alpha-Fe2O3 structure is suppressed. When amorphous Fe2O3 is heated at 300 degrees C for 3 h, ferrimagnetic gamma-Fe2O3 is observed as the sole product. On the other hand, when the temperature is raised to 500 degrees C, one observes only antiferromagnetic alpha-Fe2O3 as the product. However, upon doping with 8.5 wt % Mn(III), the amorphous nanoparticles crystallized to mainly the gamma-Fe2O3 matrix after heating at 500 degrees C for 3 h, and need to be heated to >650 degrees C for the complete transition to the alpha-Fe2O3 structure to take place.  相似文献   

5.
Highly water-dispersible Mn(3)O(4) nanocrystals with well-controlled size, size distribution and high crystallinity have been successfully synthesized through a modified polyol process. Poly(acrylic acid) is used as the capping agent, conferring upon the particles high water-dispersion, of which the carboxylate groups partially bind to the nanocrystal surface and the uncoordinated carboxylate groups extend into water. The water-dispersible Mn(3)O(4) nanocrystals can be further transferred to nonpolar solvent by linking oleylamine molecules through electrostatic interaction. The as-prepared Mn(3)O(4) nanocrystals exhibit ferromagnetic behavior at low temperature and weak paramagnetic behavior at room temperature. The Curie-Weiss temperature and the blocking temperature are 40 K and 32 K, respectively.  相似文献   

6.
Long alpha-Fe(2)O(3) hollow fibers have been prepared through a facile sol-gel combined co-electrospinning technique using ferric citrate as precursor, and alpha-Fe and gamma-Fe(2)O(3) hollow fibers have been obtained by reduction and reoxidation at different conditions. The outer diameter of the as-prepared hollow fibers is 0.5-5 microm with wall thickness of 200-800 nm. The obtained tubular fibers were characterized by thermal gravimetric (TG), FT-IR spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman techniques. In addition, magnetic properties of alpha-Fe and gamma-Fe(2)O(3) hollow fibers have also been investigated.  相似文献   

7.
The synthesis of highly crystalline and monodisperse gamma-Fe(2)O(3) nanocrystallites is reported. High-temperature (300 degrees C) aging of iron-oleic acid metal complex, which was prepared by the thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 degrees C, was found to generate monodisperse iron nanoparticles. The resulting iron nanoparticles were transformed to monodisperse gamma-Fe(2)O(3) nanocrystallites by controlled oxidation by using trimethylamine oxide as a mild oxidant. Particle size can be varied from 4 to 16 nm by controlling the experimental parameters. Transmission electron microscopic images of the particles showed 2-dimensional and 3-dimensional assembly of particles, demonstrating the uniformity of these nanoparticles. Electron diffraction, X-ray diffraction, and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the gamma-Fe(2)O(3) structures. Monodisperse gamma-Fe(2)O(3) nanocrystallites with a particle size of 13 nm also can be generated from the direct oxidation of iron pentacarbonyl in the presence of oleic acid with trimethylamine oxide as an oxidant.  相似文献   

8.
We investigate the effect of the casting solvent on the phase behavior of a cylinder-forming poly(styrene-b-isoprene) (PS-b-PI) diblock copolymer mixed with marginally selective gamma-Fe2O3 nanoparticles. Notably, for the mixtures of PS-b-PI/gamma-Fe2O3 nanoparticles cast with toluene, which is a neutral solvent for both PS and PI blocks, the latticelike aggregates of gamma-Fe2O3 nanoparticles, originating from magnetic dipole interactions, induce an intriguing transition from hexagonal cylinders to body-centered cubic spheres via undulated cylinders whereas the neat block copolymer does not show such an order-order transition. In contrast, when PI-selective hexane is used, the nanoparticles are selectively incorporated into the PI domains, and the microphase-separated hexagonal cylinder morphology gradually loses its long-range order upon increasing the nanoparticle concentration. The structural information obtained from small-angle X-ray scattering is also in good agreement with transmission electron microscopy images and differential scanning calorimetry results.  相似文献   

9.
Polymer coated superparamagnetic gamma-Fe(2)O(3) nanoparticles were derivatized with a synthetic double-stranded RNA [poly(IC)], a known allosteric activator of the latent (2-5)A synthetase, to separate a single 35 kDa protein from a crude extract which cross reacted with antibodies raised against the sponge enzyme.  相似文献   

10.
Nanostructured silica coated bifunctional nanoparticles based on [Mo(6)Br(14)](2-) units as phosphorescent dye and magnetic gamma-Fe(2)O(3) nanocrystals were synthesized and characterized.  相似文献   

11.
A monolayer of gamma-Fe(2)O(3) nanoparticles embedded in a polyimide (PI) matrix was fabricated by oxidizing an Fe metal film between two PI precursor layers. There was a critical Fe thickness ( approximately 7 nm) above which a continuous layer of gamma-Fe(2)O(3) film was formed in the PI film. Below the critical Fe thickness, the oxide film broke up into fine particles whose size was approximately 8 nm with narrow size distribution. It was further shown that these nanoparticles could have metallic cores, surrounded by an oxide layer. This method offers a unique way of covering a large surface area with fine magnetic oxide nanoparticles for potential application in high-density data-storage media.  相似文献   

12.
Heterostructure nanocrystals (NCs) of gamma-Fe(2)O(3) and MS (M = Zn, Cd, Hg) are synthesized. The large lattice mismatch between gamma-Fe(2)O(3) and MS NCs leads to noncentrosymmetric structures. Crystallographic planes at the heterojunctions are identified by high-resolution transmission electron microscopy. Preferential formation of trimers and higher oligomers for ZnS and dimers or isolated particles for CdS and HgS with gamma-Fe(2)O(3) NCs are observed and explained by changes in the effective mismatch between the coincidence lattices of the most commonly observed junction planes.  相似文献   

13.
Pure maghemite, gamma-Fe(2)O(3), was prepared as ultra fine particles in the nanometer-sized range via the forced precipitation method in an organic solvent. The precipitation of iron(III) ions, from iron(III) chloride in 2-propanol led selectively to highly dispersed particles of ferrihydrite, which upon treatment with temperatures higher than 200 degrees C under dynamic vacuum resulted in high-surface-area particles of gamma-Fe(2)O(3). Precipitation in water also led to ferrihydrite, but the final product, after heating at 300 degrees C, contained a mixture of gamma-Fe(2)O(3) and alpha-Fe(2)O(3) (hematite). The precipitation from iron(III) nitrate in water resulted in goethite which was converted to hematite upon heating. On the other hand, the final product in 2-propanol was a mixture of maghemite and hematite. The products were characterized by FTIR, TGA, XRD, and gas sorption analysis. Nitrogen gas adsorption studies for the pure gamma-Fe(2)O(3) samples revealed mesoporous particles with high surface areas in the range of 70-120 m(2) g(-1) after heat treatment at 300 degrees C. The gamma-Fe(2)O(3) particles retained their gamma-phase as well as their mesoporous structure at relatively high temperatures, as high as 400 degrees C.  相似文献   

14.
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1).  相似文献   

15.
Ordered mesoporous Fe(3)O(4) with crystalline walls (inverse spinel structure) has been synthesized for the first time, representing to the best of our knowledge, the first synthesis of a reduced mesoporous iron oxide. Synthesis was achieved by reducing ordered mesoporous alpha-Fe(2)O(3) (corundum structure) to Fe(3)O(4) spinel then to gamma-Fe(2)O(3) by oxidation, while preserving the ordered mesostructure and crystalline walls throughout. Such solid/solid transformations demonstrate the stability of the mesostructure to structural phase transitions from the hexagonal close packed oxide subarray of alpha-Fe(2)O(3) (corundum structure) to the cubic close packed subarray of Fe(3)O(4) spinel and gamma-Fe(2)O(3). Preliminary magnetic measurements reveal that the spins in both Fe(3)O(4) and gamma-Fe(2)O(3) are frozen at 295 K, despite the wall thickness (7 nm) being less than the lower limit for such freezing in corresponding nanoparticles (>8 nm).  相似文献   

16.
Shape evolution of single-crystalline iron oxide nanocrystals   总被引:1,自引:0,他引:1  
Shape- and size-controlled synthesis of single-crystalline maghemite (gamma-Fe2O3) nanocrystals are performed by utilizing a solution-based one-step thermolysis method. Modulating the growth parameters, such as the type and amount of capping ligands as well as the growth time, is shown to have a significant effect on the overall shape and size of the obtained nanocrystals and on the ripening process itself. The resulting shapes of the novel structures are diverse, including slightly faceted spheres, diamonds, prisms, and hexagons, all of which are in fact truncated dodecahedron structures with different degrees of truncation along the {111}, {110}, or {100} faces. Spherical nanocrystals are easily assembled into the three-dimensional superlattices, demonstrating the uniformity of these nanocrystals. The size-dependent magnetic properties are examined, and large hexagon-shaped gamma-Fe2O3 nanocrystals are shown to be ferrimagnetic at room temperature.  相似文献   

17.
This work describes the use of mesoporous SBA-15 silicas as hard templates for the size-controlled synthesis of oxide nanoparticles, with the pores acting as nanoscale reactors. This fundamental work is mainly aimed at understanding unresolved issues concerning the occurrence and size dependence of phase transitions in oxide nanocrystals. Aqueous solutions of Fe(NO3)3*9H2O are deposited inside the pores of SBA-15 silicas with mesopore diameters of 4.3, 6.6, and 9.5 nm. By calcination, the nitrate salt transforms into FeOx oxides. The XRD peaks of nanocrystals are broad and overlapping, resulting in ambiguities attributed to a given allotropic variety of Fe2O3 (alpha, epsilon, or gamma) or Fe3O4. The association of XRD, SAED, and Raman information is necessary to solve these ambiguities. The metastable gamma-Fe2O3 variety is selectively formed at low Fe/Si atomic ratio (ca. 0.20) and when a low calcination temperature is used (773 or 873 K followed by quenching to room temperature once the targeted temperature is reached). The small size dispersion of the patterned nanoparticles, suggested on a local scale by TEM, is confirmed statistically by magnetic measurements. The nanoparticles have a superparamagnetic behavior around room temperature. Their magnetic moments (from 220 to 370 mB), their sizes (from 4.0 to 4.8 nm), and their blocking temperatures (from 36 to 58 K) increase with the silica template mesopore diameter. Their magnetic properties are compared to those of standard gamma-Fe2O3 nanoparticles of similar size, obtained by coprecipitation in water and stabilized by a citrate coating.  相似文献   

18.
Granular, needle-, rod-, or whisker-shaped gamma-Fe2O3 nanocrystals have been prepared via controlling the chemical microenvironment of the reaction system under gamma-irradiation. A novel extension-curl-effect model was proposed to explain the effect of the chemical microenvironment on the morphology of gamma-Fe2O3 nanocrystals. The as-prepared gamma-Fe2O3 nanocrystals were characterized by powder X-ray diffraction and transmission electron microscopy. Their magnetic properties were also studied by zero-field M?ssbauer spectroscopy, which indicated that different shaped gamma-Fe2O3 nanocrystals could exhibit interesting magnetic behavior.  相似文献   

19.
A novel synthetic strategy was developed for the preparation of magnetic core-shell (MCS) particles consisting of hydrophobic poly(methyl methacrylate) cores with hydrophilic chitosan shells and gamma-Fe2O3 nanoparticles inside the cores via copolymerization of methyl methacrylate from chitosan in the presence of vinyl-coated gamma-Fe2O3 nanoparticles. The magnetic core-shell particles were characterized with transmission electron microscopy, field-emission scanning electron microscopy, particle size and zeta-potential measurements, vibrating sample magnetometry, and atomic force microscopy, respectively. The MCS particles were less than 200 nm in diameter with a narrow size distribution (polydispersity = 1.09) and had a good colloidal stability (critical coagulation concentration = 1.2 M NaCl at pH 6.0). Magnetization study of the particles indicated that they exhibited superparamagnetism at room temperature and had a saturation magnetization of 2.7 A m2/kg. The MCS particles were able to form a continuous film on a glass substrate, where magnetic nanoparticles could evenly disperse throughout the film. Thus, these new materials should be extremely useful in various applications.  相似文献   

20.
Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, large surface areas (approximately 900 m2/g), rather low densities (approximately 0.6 g/cm3), and a homogeneous distribution of single-phase maghemite, gamma-Fe2O3, nanoparticles with average sizes in the 7-8 nm range. Remarkably, the gamma-Fe2O3 nanoparticles are obtained in the as-dried state without the need of postannealing. The nanoparticles are mostly superparamagnetic at room temperature but become blocked in a ferrimagnetic state at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号