首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous investigations [1] have suggested the possibility of an effect of the sizes of the grains of a thin layer on the intensity of the exciton lines which can be observed at low temperatures. An experimental study of this effect has been carried out with CuI. It is possible to show that for thin layers formed of very small crystals, the exciton lines do not appear at all in the spectrum. The first line (n=1) appears in thin layers formed of crystals which have a size about of 860 Å, but the second line (n=2) appears only when the size of the grains is about 1000 Å. Finally, the third line (n=3) is observed only in single crystals or in thin layers which have crystals about 2000 Å?3000 Å [3]. The theory of this effect will presumably be mathematically very complicated but the physical principles implied in the described observations have been examined qualitatively in a previous paper [4] and are in good agreement with the observations.  相似文献   

2.
The atomic structure of crystals of the complex [Eu(NO3)23hmpa] NO3·HQuin , (hmpa – hexamethylphosphortriamide, HQuin – quinaldic acid) characterized by intensive luminescence and triboluminescence has been determined by the X-ray method. The noncentro-symmetric crystals of the compound are rhombic : a = 16.8193(3), b = 12.2877(2), c = 27.6516(5) Å, пр. гр. Pca2(1), Z = 4, ρ calc. . = 1.427 g/сm3. The crystals have a structure of the insular type which is presented by the isolated complex molecules, outer-sphere NO3 ? – groups, and neutral molecules of quinaldic acid. Some structural aspects of formation of the luminescent and triboluminescent properties of the compound were discussed: the role of break planes in the crystal destruction was revealed.  相似文献   

3.
A series of Zn(II)-Schiff bases I, II and III complexes were synthesized by reaction of o-phenylenediamine with 3-methylsalicylaldehyde, 4-methylsalicylaldehyde and 5-methylsalicylaldehyde. These complexes were characterized using FT-IR, UV-Vis, Diffuse reflectance UV-Vis, elemental analysis and conductivity. Complex III was characterized by XRD single crystal, which crystallizes in the triclinic system, space group P-1, with lattice parameters a?=?9.5444(2) Å, b?=?11.9407(2) Å, c?=?21.1732(3) Å, V?=?2390.24(7) Å3, D c ?=?1.408 Mg m?3, Z?=?4, F(000)?=?1050, GOF?=?0.981, R1?=?0.0502, wR2?=?0.1205. Luminescence property of these complexes was investigated in DMF solution and in the solid state. Computational study of the electronic properties of complex III showed good agreement with the experimental data.  相似文献   

4.
A new crystalline HMX polymorph, ?-HMX, was obtained. ?-HMX crystals were studied by X-ray structure analysis, optical microscopy, and differential scanning calorimetry. Their space group is P21/c. The unit cell parameters are a = 21.799(3) Å, b = 10.913(2) Å, c = 10.819(2) Å, and β = 97.43(2)°, V = 2552.15 Å3, Z = 4. ?-HMX molecules are not equivalent in crystals and have chair conformations. The heat of the polymorphic transition of ?-HMX into the δ-polymorph was measured. The transition occurred with the intermediate formation of β-HMX. The dependence between the heats of polymorphic transitions and the densities of crystals of various HMX polymorphs was demonstrated. The character of this dependence was to a substantial extent determined by the type of HMX molecule conformation.  相似文献   

5.
The properties of bismuth triselenide (Bi2Se3) are already known to a certain extent through the work of several authors, while it was still an open question whether there exists an individual solid phase of BiSe. Further information on this subject could be obtained by the successful growth and investigation of single crystals of both Bi2Se3 and Bi2Se2. X-ray analysis by means of goniometry, Weißenberg, Laue, and Debye-Scherrer diagrams confirmed the known crystal structure of Bi2Se3 (ditrigonal scalenohedral;D 3d 5 ?Rm; with the hexagonal axes:a=4·15 Å andc=28·55 Å, and 3 molecules per unit cell). As to Bi2Se2 it can be shown that it belongs to the same class but to a different space group (D 3d 1 ?P— 1m orD 3d 3 ?Pm 1; hexagonal axes:a=4·15 Å,c=22·84 Å, unit cell: 3 molecules, if the formula Bi2Se2 is adopted). Common to both is a subcell with the dimensions:a′=a=4·15 Å andc′=5·71 Å. The temperature dependence of electrical conductivity and Hall coefficient was measured on several specimens having different crystal orientations. The most striking difference is the high anisotropy of Bi2Se3 a σ c =10) as compared with Bi2Se2 a c <2). All specimens turned out to ben-type. The room temperature carrier concentration observed was:n (Bi2Se3)=8·1018 cm?3 andn (Bi2Se2)=4·1020 cm?3, the carrier mobility:μ(Bi2Se3)=2·103 cm2/V·s andμ(Bi2Se3)=20 cm2/V·s.  相似文献   

6.
Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is significant, hence single neutron diffraction investigations were undertaken. The final R-factors are: R[F 2 > 2σ(F 2)] = 0.11, Goodness of fit(S) = 1.15. Though the dopant could not be located from the difference Fourier map, the cell parameters (a = b = 7.531(3) A, c = 7.544(5) Å) were found to be significantly greater than that of pure ADP at RT (a = b = 7.502(1) Å, c = 7.546(1) Å). This indicates that the dopant concentration in the crystals is small but enough to bring changes in the overall average structure.  相似文献   

7.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

8.
With a recording photoelectric Fabry-Perot spectrometer and an atomic-beam light source the hyperfine structure of the Mn I-resonance linesλ=4031 Å,λ=4033 Å,λ=4034 Å (3d 54s 2 a 6 S 5/2?3d 54s4p z 6 P 7/2,5/2,3/2 0)and of the inter-combination linesλ=5395 Å andλ=5433 Å (3d 54s 2 a 6 S 5/2?3d 54s4p z 8 P 7/2,5/2 0) was measured. Furthermore the resonance lines have been measured with a pulsed atomic-beam in absorption. In this case the quotient (I 0(ν)?I(ν))/I 0(ν) was recorded, whereI(ν)=I 0(ν) exp(?α(ν)d) is the observed intensity with absorption andI 0(ν) the intensity of the light source. From the hyperfine structure splitting the value of the electric quadrupole moment of Mn55 was derived to be:Q(Mn55)=+(0.35±0.05)·10?24 cm2.  相似文献   

9.
The lithium dihydrogen phosphate LiH2PO4 has been investigated by X-ray powder diffraction, scanning electron microscopy (SEM), and electrical impedance spectroscopy. The Rietveld refinements based on the XRD patterns show that the compound is crystallized in the orthorhombic system with Pna21 space group, and the refined unit cell parameters are a = 6.2428 Å, b = 7.6445 Å, and c = 6.873 Å. The electrical properties were studied using complex impedance spectroscopy as a function of frequency (104–107 Hz) at various temperatures (300–400 K). The Nyquist plots are well fitted to an equivalent circuit consisting of a series of combination of grains and inhomogeneous electrode surface effect. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. Moreover, the near value of the activation energies obtained from the equivalent circuit and analysis of M″ confirms that the transport is through ion hopping mechanism dominated by the motion of the proton in the structure of the investigated material.  相似文献   

10.
MnSi1.71–1.75 single crystals are grown using the combination of solidification from solution-melt and the Bridgman crystal growth technique. The single crystals represent tetrahedral bipyramids and correspond to the highest manganese silicide (HMS) modification with lattice parameters a = b = 5.52(1) Å and c = 65.7(8) Å. The thermopower measured between the parallel faces of these single crystals is anomalously high for plain HMS (180–190 μV/K).  相似文献   

11.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

12.
The present paper reports the synthesis, crystal structure, 13C and 111Cd cross-polarization magic-angle spinning nuclear magnetic resonance(CP-MAS-NMR) analysis and ac conductivity for a new organic–inorganic hybrid salt, [C7H12N2][CdCl4]. The compound crystallizes in the triclinic system, space group P\( \overline 1 \), with unit cell dimensions: a?=?7.1050(3) Å, b?=?8.9579(3) Å, c?=?9.4482(3) Å, α?=?81.415(1)°, β?=?89.710(2)°, γ?=?85.765(1)°, V?=?592.97(4) Å3, and Z?=?2. The asymmetric unit is composed of one-2,4-diammonium toluene cation and one [CdCl4]2? anion. The Cd atom is in a slightly distorted octahedra coordination environment. Its structure can be described by infinite chains of CdCl6 octahedron linked to organic cations by a strong charge-assisted N–H???Cl interactions in order to build organic–inorganic layers staked along \( \left[ {0\overline 1 1} \right] \) direction. The solid state 13C CP-MAS-NMR spectra has shown seven isotropic resonances, confirming the existence of seven non-equivalent carbon atoms, which is consistent with crystal structure determined by X-ray diffraction. As for 111Cd MAS-NMR, it has shown one cadmium site with isotropic chemical shift observed at 167.2 ppm. The complex impedance of the compound has been investigated in the temperature range of 403–460 K and in the frequency range of 200 Hz–5 MHz. The impedance plots have shown semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements.  相似文献   

13.
The anionic conductivity of HoF3 single crystals with a β-YF3 structure (orthorhombic crystal system, space group Pnma) is investigated over a wide range of temperatures (323–1073 K). The unit cell parameters of HoF3 crystals are as follows: a=0.6384±0.0009 nm, b=0.6844±0.0009 nm, and c=0.4356±0.0005 nm. It is revealed that the conductivity anisotropy of the HoF3 crystals is insignificant over the entire temperature range covered. The crossover from one mechanism of ion transfer to another mechanism is observed near the critical temperature Tc≈620 K. The activation enthalpy of electrical conduction is found to be ΔH1=0.744 eV at T<Tc and ΔH2=0.43 eV at T>Tc. The fluorine vacancies are the most probable charge carriers in HoF3 crystals. The fluorine ionic conductivities at temperatures of 323, 500, and 1073 K are equal to 5×10?10, 5×10?6, and 2×10?3 S cm?1, respectively.  相似文献   

14.
We study an inverse problem for the two-dimensional random Schrödinger equation (Δ + q + k 2)u = 0. The potential q(x) is assumed to be a Gaussian random function whose covariance operator is a classical pseudodifferential operator. We show that the backscattered field, obtained from a single realization of the random potential q, determines uniquely the principal symbol of the covariance operator of q. The analysis is carried out by combining harmonic and microlocal analysis with stochastic methods.  相似文献   

15.
Polymer-derived SiCN ceramics, annealed (also referred to as pyrolyzed) at 1000, 1100, and 1285 °C, and doped with Fe(III) acetylacetonate, are investigated by electron paramagnetic resonance (EPR) from 4 to 120 K at X-band (9.425 GHz). In addition, the SiCN ceramic, annealed at 1100 °C, was studied by EPR at 300 K at W-band (93.96 GHz). There was observed a significant increase in EPR linewidth due to dangling bonds (g = 2.001) below 20 K at X-band. The low-field X-band FMR line (g ≈ 12) indicated the presence of ferromagnetic Fe5Si3 crystallites. There were found two EPR lines due to carbon-related dangling bonds: (1) those present as defects on the surface of the free-carbon phase (as sp2 carbon-related dangling bonds with g = 2.0011) and (2) those present within the bulk of carbon phase (as sp3 carbon-related dangling bonds with g = 2.0033). On the other hand, the intense low-field EPR signal observed at X-band was not observed at W-band. As well, there was observed splitting of the single broad EPR signal observed at g = 2.05 at X-band into two signals at W-band at g = 1.99 and g = 2.06, due to two different Fe-containing superparamagnetic nanocrystallites. Two new EPR signals, not observed at X-band, were observed at W-band, namely at g = 2.28 and g = 3.00, which are also due to g of these superparamagnetic nanocrystallites.  相似文献   

16.
It is revealed that TlS single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T ≤ 230 K in a dc electric field and a nonactivated hopping conduction at low temperatures in strong electric fields. Estimates are made for the density of states near the Fermi level (N F = 2.8 × 1020 eV?1 cm?3 and their energy spread (ΔW = 0.02 eV), the localization radius (a = 33 Å), the average jump distance in the region of activated (R av(T) = 40 Å) and nonactivated (R av(F) = 78 Å) hopping conduction, and also the drop in the charge carrier potential energy along the jump distance in an electric field F: eFR = 0.006 and 0.009 eV at F = 7.50 × 103 and 1.25 × 104 V/cm, respectively.  相似文献   

17.
The synthesis and crystal structure of the bis-(4-benzylpyridinium) tetrabromozincate(II) “(4-BP)2[ZnBr4]” salt are reported in the present paper. After an X-ray investigation, it has been shown that the title compound belongs to the centrosymmetric monoclinic system at 296 K, in the space group P21/n with the following lattice parameters a = 15.0764(8) Å, b = 22.5575(12) Å, c = 16.0739(9) Å, and β = 93.887(3)°. The FT-IR and Raman spectra confirm the presence of both cationic and anionic parts. The crystal packing is governed by an extensive network: N–H…Br, (N: pyridinium), C–H…Br hydrogen bonds, π…π, and C–H…π stacking between identical 4-BP (aromatic–aromatic), in which they may be effective in the stabilization of the crystal structure. Moreover, Hirshfeld surface analysis was used for visually analyzing intermolecular interactions in crystal structures. The phase transitions at T = 323 K have been confirmed by the differential scanning calorimetry. The electrical technique was measured in the 209 Hz–5-MHz frequency range and 298–393-K temperature intervals. The evolution of the dielectric constant as a function of frequency and temperature proved the presence of a first-order phase transition at 323 K.
Graphical abstract ?
  相似文献   

18.
The ionic conductivity along the principal axes a, b, and c of the unit cell of the nonlinear-optical high-resistance KTiOPO4 single crystals (rhombic syngony, space group Pna21), which are as-grown and after thermal annealing in vacuum, has been investigated by the method of impedance spectroscopy. The crystals were grown from a solution-melt by the Czochralski method. The as-grown KTiOPO4 crystals possess a quasi-one-dimensional conductivity along the crystallographic c axis, which is caused by the migration of K+ cations: σc = 1.0 × 10–5 S/cm at 573 K. Wherein the characteristics of the anisotropy of ionic conductivity of the crystals is equal to σca= 3 and σcb= 24. The thermal annealing at 1000 K for 10 h in vacuum increases the magnitude of σc of KTiOPO4 by a factor of 28 and leads to an increase in the ratio σcb= 2.1 × 103 at 573 K. A crystal-physical model of ionic transport in KTiOPO4 crystals has been proposed.  相似文献   

19.
Из рентгенограммы Ла уэ пластинчатых моно кристаллов вытекают три возможн ых кристаллографическ их класса тригональн ой системы: 32, Зm, ¯3m. При помощи метод а вращающегося криста лла были определены р азмеры гексагональной элем ентарной ячейкиa=10,55 Å,c=7,50 Å. На основ е этой элементарной я чейки удалось приписать диффракционные инде ксы всем наблюдаемым линиям рентгенограммы поро шкообразного Tl2HPO3, полученной по мето ду Дебая-Шеррера, как показано в таблице. Предложенная гексаг ональная ячейка соде ржит 6 молекул. Применение м еньшей ромбоэдричес кой ячейки оказывается н евозможным. Таким обр азом и исключены соответст вующие ромбоэдрические про странственные групп ы из сверху приведенных кристал лографических классов.  相似文献   

20.
Tl197m was produced by the (α, 4n) reaction on Au197 using 49 MeVα particles. The following results were obtained: Half-lifeT 1/2=(0.55±0.02) sec; energy of the isomeric level (607±4) keV, determined directly by summing up the cascade transitions in a well-type scintillator; energy of the isomeric transition (222±2) keV; conversion coefficients of this transitionα K222=0.41±0.05 andα tot222=2.1±0.2, indicating anE3 multipolarity; energy of the second transition (385±3)keV; conversion coefficientsα K385=0.09±0.03 andα tot385<0.1. This transition was identified asE2 with aM1 admixture of 20 to 30%. Spins and parities are 1/2+, 3/2+ and 9/2? for the ground state, the 385 keV state and the 607 keV isomeric state, respectively, in disagreement with the extreme single-particle model. If this model were correct, anotherM1 transition should appear. No furtherM1 transition having an energy greater than theL-shell binding energy of T1 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号