首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.  相似文献   

2.
采用XPS与接触角法研究氟聚合物表面结构与性能   总被引:6,自引:0,他引:6  
本文采用接触角和变角XPS方法对FA共聚物的表面能、 表面微相结构做了进一步的研究.  相似文献   

3.
The surface free energies of polyethylene terepthalate fibers with different draw ratios were experimentally determined by contact angle measurements inn-alkane/water systems. The dispersive component of the surface free energy increased with increasing draw ratio, whereas the nondispersive one remained almost constant. After heat treatment, the dispersive surface free energy increased, but was reduced above 140°C. The nondispersive component increased by heat treatment at 190°C. The increases in the density and birefringence of the fibres due to the drawing and heat treatment suggested that the increase in the dispersive surface free energy was caused by the increase in the atomic density at the fiber surface due to drawing and heat treatment. ESCA results indicated that the increment in the nondispersive surface free energy due to heat treatment was caused by the addition of functional groups to the fiber surface due to heat treatment.  相似文献   

4.
In the present study, a novel and simple method of obtaining superhydrophobic surface through the migration of organic siloxane segments in the acrylate side chains to the outmost layer and forming the nano-protuberance on the micro-roughness wool fabrics was described. The chemical compositions and morphologies of the untreated/treated fabrics were characterized by the scanning electron microscopy and X-ray photoelectric energy spectroscopy. Meanwhile, the surface hydrophobicity was evaluated by the static contact angle measurement. The scanning electron microscopy photographs showed that the fiber surfaces of the treated fabrics were obviously granulated, and a wax film covered on the fibers could be observed. X-ray photoelectron spectroscopy analyses and static contact angle measurement further testified that the component of the wax was almost siloxane and that the surfaces of the treated fabrics had superhydrophobic property. The above results indicated that this method could be extended to prepare superhydrophobic surfaces by migrating the low-surface-energy matter and fabricating the nanoscale roughness on the micro-roughness material surfaces.  相似文献   

5.
The effect of anodic oxidation on high-strength polyacrylonitrile-based carbon fibers has been studied in terms of fiber surface energetics and fracture toughness of the composites. According to contact angle measurements based on the wicking rate of a test liquid, anodic oxidation leads to an increase in surface free energy, mainly due to the increase of its specific (or polar) component. For the carbon-fiber-reinforced epoxy resin matrix system, a direct linear relationship is shown between the specific component and the critical stress intensity factor measured by the single edge notched beam fracture toughness test. From a surface-energetic point of view, the anodic treatment may be suitable for carbon fibers incorporated in a polar organic matrix, resulting in an increased specific component of the surface free energy. Good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and matrices of the resulting composites. Copyright 2000 Academic Press.  相似文献   

6.
利用射频感性耦合冷等离子体(ICP)处理技术改性连续纤维表面,分别采用X射线光电子能谱(XPS)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了等离子体处理时间、放电气压、放电功率等工艺参数对连续碳纤维、芳纶纤维和对亚苯基苯并二噁唑(PBO)纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响.研究结...  相似文献   

7.
Wettability of electrolytically oxidized graphite fibers has been investigated by contact angle measurements employing the Wilhelmy method. The atomic ratio of oxygen to carbon, O/C, in the surface layer of the graphite fiber increased with increasing electric specific charge. Contact angle hysteresis was not observed for the untreated graphite fiber (O/C=0.01). The contact angles decreased with increasing O/C, especially for the receding angle, and approached constant for O/C>0.2. The nondispersive and dispersive surface free energies of the oxidized graphite fibers were calculated from the experimentally determined contact angles. The nondispersive surface free energy increased by the oxidation, whereas the dispersive one decreased. From the results of surface analysis, it was found that the changes in the nondispersive and dispersive surface free energies were caused by the increase in O/C ratio and the decrease in surface crystallinity, respectively.  相似文献   

8.
In this work, the influence of atmospheric-pressure CHF(3)/Ar plasma treatment on surface dielectric properties of polyimide films was investigated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The dielectric characteristics of the films were studied using a dielectric spectrometer. From the results, it was found that the plasma treatment introduced fluorine functional groups onto the polyimide surfaces. F 1s/C 1s ratios of the polyimides were enhanced with the increase of plasma treatment time. Consequently, the fluorine groups led to a decrease of the surface free energy and dielectric constant of the polyimide films, which can largely be attributed to the decrease of the deformation polarizability or London dispersive component of surface free energy of the solid surface studied.  相似文献   

9.
In this work, the objective was to synthesize a compatibilizer that can electrostatically adsorb onto cellulose fibers, in fiber-based composites, to enhance the interaction between the fibers and non-polar polymer matrices. This physical route to attach the compatibilizer onto and thereby modify a fiber surface is convenient since it can be performed in water under mild conditions. Polystyrene (PS) was used for the high molecular weight, non-polar, block and poly(dimethylamino)ethyl methacrylate (PDMAEMA) was used as the polar block, which was subsequently quaternized to obtain cationic charges. The block copolymer self-assembles in water into cationic micelles and the adsorption to both silicon oxide surfaces and cellulose model surfaces was studied. The micelles spread out on the surface after heat treatment and contact angle measurements showed that the contact angles against water increased significantly after this treatment. AFM force measurements were performed with a PS probe to study the adhesive properties. The adhesion increased with increasing contact time for the treated surfaces, probably due to entanglements between the polystyrene blocks at the treated surface and the probe. This demonstrates that the use of this type of amphiphilic block copolymer is a promising route to improve the compatibility between charged reinforcing materials, such as cellulose-based fibers/fibrils, and hydrophobic matrices in composite materials.  相似文献   

10.
The surface wettabilities of polymer brushes with hydrophobic and hydrophilic functional groups were discussed on the basis of conventional static and dynamic contact angle measurements of water and hexadecane in air and captive bubble measurements in water. Various types of high-density polymer brushes with nonionic and ionic functional groups were prepared on a silicon wafer by surface-initiated atom-transfer radical polymerization. The surface free energies of the brushes were estimated by Owens-Wendt equation using the contact angles of various probe liquids with different polarities. The decrease in the water contact angle corresponded to the polarity of fluoroalkyl, hydroxy, ethylene oxide, amino, carboxylic acid, ammonium salt, sulfonate, carboxybetaine, sulfobetaine, and phosphobetaine functional groups. The poly(2-perfluorooctylethyl acrylate) brush had a low surface free energy of approximately 8.7 mN/m, but the polyelectrolyte brushes revealed much higher surface free energies of 70-74 mN/m, close to the value for water. Polyelectrolyte brushes repelled both air bubbles and hexadecane in water. Even when the silicone oil was spread on the polyelectrolyte brush surfaces in air, once they were immersed in water, the oil quickly rolled up and detached from the brush surface. The oil detachment behavior observed on the superhydrophilic polyelectrolyte brush in water was explained by the low adhesion force between the brush and the oil, which could contribute to its excellent antifouling and self-cleaning properties.  相似文献   

11.
The surface chemical modification of microcrystalline cellulose and cellulose fibers obtained from different sugar cane bagasse pulping processes, viz. Kraft, organosolv ethanol/water and organosolv/supercritical carbon dioxide, were studied in heterogeneous conditions using modest amounts of octadecanoyl and dodecanoyl chloride. The ensuing surfaces acquired a non-polar character, suitable for incorporating these fibers as reinforcing agents in composite materials based on polymeric matrices. The success of these chemical modifications was assessed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, elemental analysis, scanning electron microscopy (SEM) and contact angle measurements. In particular, the dynamic and equilibrium contact angle measurements, before and after the treatments, revealed that the value of the polar component (gamma(s)p) of the surface energy had decreased very considerably following the modification.  相似文献   

12.
The utility of high-strength, high-modulus polyethylene fibers in fiber-reinforced composites is limited due to its poor interfacial adhesion to various polymeric matrices. One way to overcome this limitation is to introduce reactive functionalities on the fiber surface capable of covalently bonding to matrix resins. Ultra high-strength polyethylene (UHSPE) fibers were treated with chlorosulfonic acid. The surface acid groups were found to considerably improve the interfacial adhesion between polyethylene fibers and epoxy resins as shown by the microbond test. These surface functionalities were found to improve the fiber wettability, as shown by contact angle measurements using the Wilhelmy balance method. Colorimetric measurements of methylene blue absorption were used to quantify the surface concentrations of the acid groups. It was possible to functionalize the UHSPE fiber surfaces using this method to obtain fibers that formed a stronger adhesive bond with epoxy resins; this was achievable without sacrificing other fiber mechanical properties.  相似文献   

13.
The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.  相似文献   

14.
It is examined whether useful information on plant fiber surfaces can be retrieved from wetting experiments such as dynamic contact angle (DCA) analysis by use of the Wilhelmy technique and the Lifshitz-van der Waals acid-base theory. It is argued from a theoretical point of view that plant fibers may give rise to various complex phenomena during wetting experiments, phenomena which are typically not found for synthetic fibers, and that these phenomena can be a source of invalidation of experimental techniques which are commonly thought to supply information on equilibrium (or quasi-equilibrium) properties of plant fiber surfaces or of surface-liquid interactions. The nonequilibrium phenomena are studied experimentally by DCA analysis of 10 sisal fibers, 10 coir fibers, and 5 polyacrylate-coated glass fibers. The fibers are immersed in deionized water at 10 different speeds ranging from 2 to 100 μm s(-1) and the relationship between immersion speed and contact angle is examined. In contrast to what is found for the coated glass fibers, the results indicate that the (aqueous) wetting behavior of sisal and coir fibers is qualitatively far from the behavior which should ensure the meaningful interpretation of the wetting data as (quasi-)equilibrium data. From both a theoretical and a practical basis it is hence concluded that nonequilibrium phenomena necessitate a more severe form of precaution toward surface energy component theories when these are used for interpreting plant fiber wetting than what is currently at issue. Copyright 2001 Academic Press.  相似文献   

15.
Janca  J.  Stahel  P.  Buchta  J.  Subedi  D.  Krcma  F.  Pryckova  J. 《Plasmas and Polymers》2001,6(1-2):15-26
Polyester tire cord surfaces have been modified by plasma at low temperature and atmospheric pressure. The surface treatment has been executed by various nonequilibrium discharges, namely by barrier discharge, atmospheric pressure glow discharge and gliding arc. The polymeric multicord sewing threads treated by this procedure have been used in the same form as in industry, i.e., with the protecting oil films on their surface. The surface properties have been investigated by electron spin resonance spectroscopy and by measuring their contact angle with various liquids; partially the zeta potential measurements have been used, too. Further tests have been done at an industrial testing impregnation line using the common technology and conditions, on both plasma treated and untreated fibers. Finally, the standard H-tests and peel-tests have been used to characterize the fiber adhesion to usual testing rubbers.  相似文献   

16.
Sulphur hexafluoride (SF(6)) plasma treatments and hexamethyl disiloxane (HMDSO) plasma polymerisation were performed on poly(ethylene terephthalate) (PET) meshes and the resulting wettability against liquids having very different surface tensions were investigated at the light of a possible use of the materials in the fuel/water separation technology. Surface modification of the meshes owing to HMDSO plasma polymerisation followed by SF(6) plasma treatment was also investigated. Hydrophobic performances were characterised refining the conventional Wilhelmy dynamic contact angle (DCA) technique, using several reference solutions having the surface tension values between 20-72 mN/m. Measurements of the water intrusion pressure (WIP) of the treated samples were also performed. Surface modifications on the plasma treated meshes were investigated by means of Fourier-transform infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. SF(6) and HMDSO plasma treatments decrease the surface energy of the PET meshes, lowering the liquid surface tension at which the wettable/unwettable transition occurs and increasing the WIP. Moreover, an increase in hydrophobic performances was achieved with HMDSO plasma polymerisation followed by SF(6) plasma treatment.  相似文献   

17.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Oxygen plasma is widely employed for modification of polymer surfaces. Plasma treatment process is a convenient procedure that is also environmentally friendly. This study reports the effects of oxygen plasma treatment on the surface properties of poly(p‐phenylene terephthalamide) (PPTA) fibers. The surface characteristics before and after oxygen plasma treatment were analyzed by XPS, atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA). It was found that oxygen plasma treatment introduced some new polar groups (O? C?O) on the fiber surface, increased the fiber surface roughness and changed the surface morphologies obviously by plasma etching and oxidative reactions. It is also shown that the fiber surface wettability was improved significantly by oxygen plasma treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
As-grown and heat-treated vapour grown carbon fibres (VGCF) in the as-prepared state, washed in HCl/H(2)O, and treated in O(2) plasma for different periods have been investigated by means of XPS and scanning electron microscopy (SEM). The surface energy of the carbon fibres before and after plasma treatment was determined from the wetting contact angle. Washing introduced hydroxyl, carbonyl and carboxyl groups onto the fibre surfaces and oxygen plasma treatment increases the total atomic concentration of oxygen up to 17%. This is in good agreement with the value of the polar component of the surface energy. Plasma treatment also enhanced the fibre surface porosity (by etching).  相似文献   

20.
Surface properties of bleached kraft pulps were evaluated before and after recycling, and after a series of chemical treatments designed to improve and/or modify the pulp characteristics. The surface free energy characteristics of the pulps were determined using the Wilhelmy technique, and ESCA and ATR-FTIR methods were used to evaluate the chemical composition of the surfaces of the pulp fibers. In general rather small changes were noted at the fiber surfaces with recycling and chemical treatment. Recycling tended to increase the acid component and decrease the base component of the surface free energy of the pulps. This could result from exposure of carboxyl groups from hemicelluloses and/or from oxidized layers from the bleaching process. ESCA analyses also indicated increased carboxyl concentration at the surfaces of the recycled fibers. Although treatment with aqueous bases and organic solvents tended to increase the hydroxyl content on the surface of recycled pulps, the chemical treatments were not beneficial to pulp quality. AFM and SEM of fiber and fine surfaces of kraft pulps revealed that the fines fraction was altered to a much greater extent with recycling. Although recycled fibers appeared to have improved wettability, these small changes in the surface characteristics do not appear to play the dominant role in the characteristics of recycled pulps. Recycling did not change the crystallinity of whole pulps, but it increased the crystallinity of the fines fraction. The increase in the crystallinity of the fines fraction and the reduction in the water retention value (WRV) and the bulk carboxyl content (xylan) of the recycled pulps, as noted in Part I of this paper, appear to play the predominant role in determining the characteristics of recycled pulps. It appears that the loss of the hemicelluloses in the bulk of the fiber with recycling is much more important for internal fibrillation than the apparent small increase of hemicelluloses at the surface of recycled fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号