首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We extend the existence theorem recently proved by Hamdache for the initial-boundary-value problem for the nonlinear Boltzmann equation in a vessel with isothermal boundaries to more general situations including the case when the boundaries are not isothermal. In the latter case a cut-off for large speeds is introduced in the collision term of the Boltzmann equation.  相似文献   

3.
We study two‐dimensional Riemann problems with piecewise constant data. We identify a class of two‐dimensional systems, including many standard equations of compressible flow, which are simplified by a transformation to similarity variables. For equations in this class, a two‐dimensional Riemann problem with sectorially constant data becomes a boundary‐value problem in the finite plane. For data leading to shock interactions, this problem separates into two parts: a quasi‐one‐dimensional problem in supersonic regions, and an equation of mixed type in subsonic regions. We prove a theorem on local existence of solutions of quasi‐one‐dimensional Riemann problems. For 2 × 2 systems, we generalize a theorem of Courant & Friedrichs, that any hyperbolic state adjacent to a constant state must be a simple wave. In the subsonic regions, where the governing equation is of mixed hyperbolic‐elliptic type, we show that the elliptic part is degenerate at the boundary, with a nonlinear variant of a degeneracy first described by Keldysh. (Accepted December 4, 1997)  相似文献   

4.
The linear and nonlinear stability of a heterogeneous incompressible inviscid perfectly conducting fluid between two cylinders is investigated in the presence of a radial gravitational force and geostrophic force. The stability for linear disturbances is investigated using the normal mode method, while the nonlinear stability is investigated by applying the energy method. In the case of linear theory, it is found that a necessary condition for in stability is that the algebraic sum of hydrodynamic, hydromagnetic and rotation Richardson number is less than one quarter somewhere in the fluid. A semi-circle theorem similar to that of Howard is also obtained. In the case of nonlinear disturbances a universal stability estimate namely a stability limit for motions subject to arbitrary nonlinear disturbances is obtained in the form $$E \leqslant E_0 \exp ( - 2M\tau ).$$ The motion is asymptotically stable if $$\delta \leqslant 1 + J_m + J_H $$ somewhere in the fluid. This asymptotic stability limit is improved using the calculus of variation technique. We also find that whenδ=1/4, andJ R=1, both the linear and nonlinear stability criteria coincide and in that particular case, we have a necessary and sufficient condition for stability.  相似文献   

5.
A classical result of Gilbarg states that a simple shock wave solution of Euler's equations is compressive if and only if a corresponding shock layer solution of the Navier-Stokes equations exists, assuming, among other things, that the equation of state is convex. An entropy condition appropriate for weeding out unphysical shocks in the nonconvex case has been introduced by T.-P. Liu. For shocks satisfying his entropy condition, Liu showed that purely viscous shock layers exist (with zero heat conduction). Dropping the convexity assumption, but retaining many other reasonable restrictions on the equation of state, we construct an example of a (large amplitude) shock which satisfies Liu's entropy condition but for which a shock layer does not exist if heat conduction dominates viscosity. We also give a simple restriction, weaker than convexity, which does guarantee that shocks which satisfy Liu's entropy condition always admit shock layers.  相似文献   

6.
We establish nonlinear L1H3Lp orbital stability, 2p, with sharp rates of decay, of large-amplitude Lax-type shock profiles for a class of symmetric hyperbolic-parabolic systems including compressible gas dynamics and magnetohydrodynamics (MHD) under the necessary conditions of strong spectral stability, i.e., a stable point spectrum of the linearized operator about the wave, transversality of the profile, and hyperbolic stability of the associated ideal shock. This yields in particular, together with the spectral stability results of [50], the nonlinear stability of arbitrarily large-amplitude shock profiles of isentropic Navier–Stokes equations for a gamma-law gas as 1: the first complete large-amplitude stability result for a shock profile of a system with real (i.e., partial) viscosity. A corresponding small-amplitude result was established in [53, 54] for general systems of Kawashima class by a combination of Kawashima-type energy estimates and pointwise Green function bounds, where the small-amplitude assumption was used only to close the energy estimates. Here, under the mild additional assumption that hyperbolic characteristic speeds (relative to the shock) are not only nonzero but of a common sign, we close the estimates instead by use of a Goodman-type weighted norm [25, 26] designed to control estimates in the crucial hyperbolic modes.  相似文献   

7.
A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function E(rl,rw){\mathcal{E}(\rho\lambda,\rho\omega)} which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of E(rl,rw){\mathcal{E}(\rho\lambda,\rho\omega)} and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e{\epsilon} of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.  相似文献   

8.
Pointwise spatial decay estimates for a class of steady and unsteady nonlinear Dirichlet problems in a semi-infinite cylinder are obtained. These estimates extend previous results of Breuer & Roseman to a wider class of equations of mathematical physics.  相似文献   

9.
In this paper we propose a phenomenological theory for electrorheological fluids. In general these are suspensions which undergo dramatic changes in their material properties if they are exposed to an electric field. In the context of continuum mechanics these fluids can be modeled as non-Newtonian fluids. Recalling the governing equations of rational thermodynamics and electrodynamics of moving media (Maxwell-Minkowski-equations), we derive suitable governing equations of electrorheology using essentially two assumptions concerning magnetic quantities. Furthermore we introduce a 3-dimensional nonlinear constitutive equation for the Cauchy stress tensor which is an extension of the model proposed by Ružička (see [14]). Assuming a viscometric flow, we compare the shear stress of our model with other well known models and fit the parameters by using measurements that were obtained in a rotational viscometer. Excellent agreement between model and measurements is achieved. On the basis of these results we propose a 3-dimensional model, the so-called extended Casson -model. This model is investigated further for a channel flow configuration with a homogeneous electric field. We determine analytical solutions for the electric field, the velocity and the volumetric flow rate and illustrate the velocity profiles and the predicted pressure drop. The velocity profiles are flattened compared to parabolic profiles and become more flat if the electric field increases. Received March 21, 2000  相似文献   

10.
We study the stability of the null solution of a class of nonlinear evolution equations in Banach space. After stating a local existence result and the principle of linearized stability, we study the critical case, giving sufficient conditions for stability. The results are applied to second-order fully nonlinear parabolic equations in [0, + [ × R n .  相似文献   

11.
For a class of physical systems whose temporal evolution is governed by ordinary differential equations, the consequences of an assumption of asymptotic stability for equilibrium states in isolation remarkably resemble various forms of the second law of thermodynamics. Here we apply a known converse to Lyapunov's stability theorem to motivate both Gibbs' theory of thermostatics and the use of the Clausius-Duhem inequality for systems which are out of equilibrium and exchanging heat with their surroundings. We also discuss conditions under which the entropy of a system can be expressed as a sum of the entropies of its material points.  相似文献   

12.
We investigate the layer undulations that appear in smectic A liquid crystals when a magnetic field is applied in the direction parallel to the smectic layers. In an earlier work (García-Cervera and Joo in J Comput Theor Nanosci 7:795–801, 2010) the authors characterized the critical field using the Landau–de Gennes model for smectic A liquid crystals. In this paper, we obtain an asymptotic expression of the unstable modes using Γ-convergence theory, and a sharp estimate of the critical field. Under the assumption that the layers are fixed at the boundaries, the maximum layer undulation occurs in the middle of the cell and the displacement amplitude decreases near the boundaries. Our estimate of the critical field is consistent with the Helfrich–Hurault theory. When natural boundary conditions are considered, the displacement amplitude does not diminish near the boundary, in sharp contrast with the Dirichlet case, and the critical field is reduced compared to the one calculated in the classical theory. This is consistent with the experiments carried out by Ishikawa and Lavrentovich (Phys Rev E 63:030501(R), 2001). Furthermore, we prove the existence and stability of the solution to the nonlinear system of the Landau–de Gennes model using bifurcation theory. Numerical simulations are used to illustrate the predictions of the analysis.  相似文献   

13.
A semi-analytic solution is described for planar radiative shock waves in the equilibrium diffusion (1−T) limit. The solution requires finding numerically the root of a polynomial and integrating a nonlinear ordinary differential equation. This solution may be used as a test problem to verify computer codes that use the equilibrium–diffusion radiation model, or for more advanced radiation models in the optically-thick limit. The structure of the shock profiles is also discussed, including new accurate estimates on the conditions for continuous solutions. We also discuss how the Zel’dovich spike may be estimated from the equilibrium diffusion solution. Finally, results from a computer code are shown to compare well with a semi-analytic solution.   相似文献   

14.
The theory of singular surfaces yields a set of coupled evolution equations for the shock amplitude and the amplitudes of the higher order discontinuities which accompany the shock. To solve these equations, we use perturbation methods with a perturbation parameter characterising the initial shock amplitude. It is shown that for decaying shock waves, if the accompanying second order discontinuity is of order one, the straightforward perturbation procedure yields uniformly valid solutions, but if the accompanying second order discontinuity is of order , the method of multiple scales is needed in order to render the perturbation solutions uniformly valid with respect to the distance of travel. We also construct shock wave solutions from modulated simple wave solutions which are obtained with the aid ofHunter & Keller's Weakly Nonlinear Geometrical Optics method. The two approaches give exactly the same results within their common range of validity. The explicit evolution laws thus obtained enable us to see clearly how weak nonlinear curved shock waves are attenuated because of the effects of geometry and material nonlinearity, and on what length scale these effects are most pronounced. Communicated by C. C. Wang  相似文献   

15.
This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \(0<\alpha <2\). Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \(0<\alpha <2\) are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.  相似文献   

16.
This paper treats the hyperbolic-elliptic system of two conservation laws which describes the dynamics of an elastic material having a non-monotone strain-stress function. FollowingAbeyaratne &Knowles, we propose a notion of admissible weak solution for this system in the class of functions of bounded variation. The formulation includes an entropy inequality, a kinetic relation (imposed along any subsonic phase boundary) and an initiation criterion (for the appearance of new phase boundaries). We prove theL 1-continuous dependence of the solution to the Riemann problem. Our main result yields the existence and the stability of propagating phase boundaries. The proofs are based onGlimm's scheme and in particular on the techniques ofGlimm andLax. In order to deal with the kinetic relation, we prove a result of pointwise convergence of the phase boundary.  相似文献   

17.
The rigorous study of spectral stability for strong detonations was begun by Erpenbeck (Phys. Fluids 5:604–614 1962). Working with the Zeldovitch–von Neumann–D?ring (ZND) model (more precisely, Erpenbeck worked with an extension of ZND to general chemistry and thermodynamics), which assumes a finite reaction rate but ignores effects such as viscosity corresponding to second order derivatives, he used a normal mode analysis to define a stability function V(t,e){V(\tau,\epsilon)} whose zeros in ${\mathfrak{R}\tau > 0}${\mathfrak{R}\tau > 0} correspond to multidimensional perturbations of a steady detonation profile that grow exponentially in time. Later in a remarkable paper (Erpenbeck in Phys. Fluids 9:1293–1306, 1966; Stability of detonations for disturbances of small transverse wavelength, 1965) he provided strong evidence, by a combination of formal and rigorous arguments, that for certain classes of steady ZND profiles, unstable zeros of V exist for perturbations of sufficiently large transverse wavenumber e{\epsilon} , even when the von Neumann shock, regarded as a gas dynamical shock, is uniformly stable in the sense defined (nearly 20 years later) by Majda. In spite of a great deal of later numerical work devoted to computing the zeros of V(t,e){V(\tau,\epsilon)} , the paper (Erpenbeck in Phys. Fluids 9:1293–1306, 1966) remains one of the few works we know of [another is Erpenbeck (Phys. Fluids 7:684–696, 1964), which considers perturbations for which the ratio of longitudinal over transverse components approaches ∞] that presents a detailed and convincing theoretical argument for detecting them. The analysis in Erpenbeck (Phys. Fluids 9:1293–1306, 1966) points the way toward, but does not constitute, a mathematical proof that such unstable zeros exist. In this paper we identify the mathematical issues left unresolved in Erpenbeck (Phys. Fluids 9:1293–1306, 1966) and provide proofs, together with certain simplifications and extensions, of the main conclusions about stability and instability of detonations contained in that paper. The main mathematical problem, and our principal focus here, is to determine the precise asymptotic behavior as e?¥{\epsilon\to\infty} of solutions to a linear system of ODEs in x, depending on e{\epsilon} and a complex frequency τ as parameters, with turning points x * on the half-line [0,∞).  相似文献   

18.
We study the effect of the Maximum Entropy Principle (MEP) on the thermodynamic behaviour of gases. The MEP relies on the kinetic theory of gases and yields the local constitutive equations of Extended Thermodynamics. There are two extreme cases on the scale of the kinetic theory: Dominance of particle interactions and free flight. In its current form the MEP gives the phase density that maximizes the entropy at each instant of time. This is appropriate in case of dominant particle interaction but it is not adequate for free flight. Here we introduce a modified MEP that is capable to link both extreme cases. To illustrate the way the modified MEP works, we consider an example which leads in the case of dominant particle interactions to the Euler equations. In addition there results a representation theorem that contains the global solutions of the Euler equations with all shock interactions for arbitrary large variations of the initial data. Received May 6, 1998  相似文献   

19.
This article deals with a boundary-layer problem arising in the kinetic theory of gases when the mean free path of molecules tends to zero. The model considered here is the stationary, nonlinear Boltzmann equation in one dimension with a slightly perturbed reflection boundary condition. We restrict our attention to the case of hard spheres collisions, with Grad's cutoff assumption. Existence, uniqueness and asymptotic behavior are derived by means of energy estimates.  相似文献   

20.
We prove nonlinear stability in L 1 of planar shock front solutions to a viscous conservation law in two spatial dimensions and obtain an expression for the asymptotic form of small perturbations. The leading-order behavior is shown rigorously to be governed by an effective diffusion coefficient depending on forces transverse to the shock front. The proof is based on a spectral analysis of the linearized problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号