首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer mediated self-assembly of magnetic nanoparticles   总被引:2,自引:0,他引:2  
We present a simple polymer-mediated process of assembling magnetic FePt nanoparticles on a solid substrate. Alternatively absorbing the PEI molecule and FePt nanoparticles on a HO-terminated solid surface leads to a smooth FePt nanoparticle assembly with controlled assembly thickness and dimension. Magnetic measurements show that the thermally annealed FePt nanoparticle assembly as thin as three nanoparticle layers is ferromagnetic. The magnetization direction of this thin FePt nanoparticle assembly is readily controlled with the laser-assisted magnetic writing. The reported process can be applied to various substrates, nanoparticles, and functional macromolecules and will be useful for future magnetic nanodevice fabrication.  相似文献   

2.
Surface modification with linear polymethacrylic acid (20 kDa), linear and branched polyethylenimine (25 kDa), and branched oligoethylenimine (800 Da) is commonly used to improve the function of magnetite nanoparticles (MNPs) in many biomedical applications. These polymers were shown herein to have different adsorption capacity and anticipated conformations on the surface of MNPs due to differences in their functional groups, architectures, and molecular weight. This in turn affects the interaction of MNPs surfaces with biological serum proteins (fetal bovine serum). MNPs coated with 25 kDa branched polyethylenimine were found to attract the highest amount of serum protein while MNPs coated with 20 kDa linear polymethacrylic acid adsorbed the least. The type and amount of protein adsorbed, and the surface conformation of the polymer was shown to affect the size stability of the MNPs in a model biological media (RPMI-1640). A moderate reduction in r(2) relaxivity was also observed for MNPs suspended in RPMI-1640 containing serum protein compared to the same particles suspended in water. However, the relaxivities following protein adsorption are still relatively high making the use of these polymer-coated MNPs as Magnetic Resonance Imaging (MRI) contrast agents feasible. This work shows that through judicious selection of functionalization polymers and elucidation of the factors governing the stabilization mechanism, the design of nanoparticles for applications in biologically relevant conditions can be improved.  相似文献   

3.
Janus magnetic nanoparticles (~20 nm) were prepared by grafting either polystyrene sodium sulfonate (PSSNa) or polydimethylamino ethylmethacrylate (PDMAEMA) to the exposed surfaces of negatively charged poly(acrylic acid) (PAA)-coated magnetite nanoparticles adsorbed onto positively charged silica beads. Individually dispersed Janus nanoparticles were obtained by repulsion from the beads on reversal of the silica surface charge when the solution pH was increased. Controlled aggregation of the Janus nanoparticles was observed at low pH values, with the formation of stable clusters of approximately 2-4 times the initial size of the particles. Cluster formation was reversed, and individually dispersed nanoparticles recovered, by restoring the pH to high values. At intermediate pH values, PSSNa Janus nanoparticles showed moderate clustering, while PDMAEMA Janus nanoparticles aggregated uncontrollably due to dipolar interactions. The size of the stable clusters could be controlled by increasing the molecular weight of the grafted polymer, or by decreasing the magnetic nanoparticle surface availability for grafting, both of which yielded larger cluster sizes. The addition of small amounts of PAA-coated magnetic nanoparticles to the Janus nanoparticle suspension resulted in a further increase in the final cluster size. Monte Carlo simulation results compared favorably with experimental observations and showed the formation of small, elongated clusters similar in structure to those observed in cryo-TEM images.  相似文献   

4.
A facile method of stabilizing magnetic iron oxide nanoparticles (MNPs) in biological media (RPMI-1640) via surface modification with fetal bovine serum (FBS) is presented herein. Dynamic light scattering (DLS) shows that the size of the MNP aggregates can be maintained at 190 ± 2 nm for up to 16 h in an RPMI 1640 culture medium containing ≥4 vol % FBS. Under transmission electron microscopy (TEM), a layer of protein coating is observed to cover the MNP surface following treatment with FBS. The adsorption of proteins is further confirmed by X-ray photoelectron spectroscopy (XPS). Gel electrophoresis and LC-MS/MS studies reveal that complement factor H, antithrombin, complement factor I, α-1-antiproteinase, and apolipoprotein E are the proteins most strongly attached to the surface of an MNP. These surface-adsorbed proteins serve as a linker that aids the adsorption of other serum proteins, such as albumin, which otherwise adsorb poorly onto MNPs. The size stability of FBS-treated MNPs in biological media is attributed to the secondary adsorbed proteins, and the size stability in biological media can be maintained only when both the surface-adsorbed proteins and the secondary adsorbed proteins are present on the particle's surface.  相似文献   

5.
Lawrence NS  Davis J  Compton RG 《Talanta》2001,53(5):1089-1094
The utilisation of catechol as an electrochemical indicator for the presence of sulphydryl thiols (RSH) has been investigated. The electrochemical oxidation of the catechol within tissue culture media was examined with the influence exerted on the redox chemistry by cysteine evaluated in terms of the development of an analytical protocol. The electro-generation of o-quinone was found to be followed by a 1,4-addition reaction with available cysteine such that an increase in the current, attributed to the re-oxidation of the thiol-catechol adduct, could be exploited as means of quantifying the concentration of the thiol. The selectivity of the reaction has been assessed with no interference from lysine, tyrosine, methionine or cystine. Other amino acids possessing sulphydryl thiol functionalities (homocysteine and glutathione) were, however, found to react through a similar route to that observed with cysteine.  相似文献   

6.
In this work, sub-50 nm pegylated mesoporous silica nanoparticles prepared with hydrothermal treatment are shown to have long-term stability in various media at both room and physiological temperature. Compared to bare mesoporous silica nanoparticles, the highly pegylated mesoporous silica nanoparticles show significantly improved biocompatibility and decreased macrophage uptake, making these nanoparticles viable for in vivo stealth drug delivery applications.  相似文献   

7.
Cationic superparamagnetic iron oxide nanoparticles were assembled using a series of anionic polyamidoamine dendrimers. The resulting assemblies featured systematically increasing average interparticle spacing over a 2.4 nm range with increasing dendrimer generation. This increase in spacing modulated the collective magnetic behavior by effective lowering of the dipolar coupling between particles. The results obtained in these studies deviate from the predicted dependence of collective behavior on interparticle spacing, suggesting that a dense assembly of magnetically "free" particles can exist with a surprisingly small space between particles.  相似文献   

8.
Covalent linkage of oleic acid ligated Fe3O4 spheres (9 nm) with sheetlike [H1-xCa2Nb3O10] particles (300 x 300 x 2 nm) yields, depending on conditions, submicro- or microscale stacks, which on their surfaces are decorated with magnetite nanoparticles. Due to the optical anisotropy of the sheetlike Ca2Nb3O10 building blocks and due to the superparamagnetic nature of the Fe3O4 components, the nanostructured composites exhibit magnetically controllable birefringence and light-scattering properties in solution.  相似文献   

9.
Hybrid nanoparticles are of significant interest primarily because of their innate multifunctional capabilities. These capabilities can be exploited when hybrid nanoparticles are used for applications in the biomedical sciences in particular, where they are utilized as multimodal nanoplatforms for sensing, imaging, and therapy of biological targets. However, the realization of their biomedical applications has been difficult, in part because of a lack of high quality hybrid nanoparticles which possess high aqueous colloidal stability and biocompatibility while retaining their multifunctionalities. Here, we present the development of inorganic heterodimer nanoparticles of FePt-Au with multifunctional capabilities including catalytic growth effects, magnetic resonance (MR) contrast effects, optical signal enhancing properties, and high colloidal stability and biocompatibility. Their multimodal capabilities for biological detection are demonstrated through their utilizations in the patterned biochip based detection of avidin-biotin interaction as well as in molecular MR imaging of neuroblastoma cells.  相似文献   

10.
We report how to control the self-assembly of magnetic nanoparticles and a prototypical amphiphilic block-copolymer composed of poly(acrylic acid) and polystyrene (PAA-b-PS). Three distinct structures were obtained by controlling the solvent-nanoparticle and polymer-nanoparticle interactions: (1) polymersomes densely packed with nanoparticles (magneto-polymersomes), (2) core-shell type polymer assemblies where nanoparticles are radially arranged at the interface between the polymer core and the shell (magneto-core shell), and (3) polymer micelles where nanoparticles are homogeneously incorporated (magneto-micelles). Importantly, we show that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. As a consequence, the self-assembly of micelle-forming block-copolymers typically produces magneto-polymersomes instead of magneto-micelles. On the other hand, vesicle-forming polymers tend to form magneto-micelles due to the solubilization of nanoparticles in polymer assemblies. The nanoparticle-polymer interaction also controls the nanoparticle arrangement in the polymer matrix. In N,N-dimethylformamide (DMF) where PS is not well-solvated, nanoparticles segregate from PS and form unique radial assemblies. In tetrahydrofuran (THF), which is a good solvent for both nanoparticles and PS, nanoparticles are homogeneously distributed in the polymer matrix. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their magnetic relaxation properties, emphasizing the importance of the self-assembly structure and nanoparticle arrangement as well as the size of the assemblies.  相似文献   

11.
Monodisperse Fe3O4 nanoparticles (NPs) with narrow size distribution are synthesized by a high-temperature solution-phase method. The diameter of the as-synthesized NPs is tuned from 2 to 14 nm by varying the reaction conditions. Highly ordered superlattice structures of the Fe3O4 NPs with areas extending over 0.8 microm x 0.7 microm have been successfully obtained. The magnetic properties are investigated in their different states, such as in the solid state and diluted in wax with different concentrations. Some magnetic properties enhanced by increasing interparticle distances, such as the remanent magnetization and coercive field at low temperature, were noticed. Furthermore, we also observed that the saturation magnetization changed with temperature as expected. The preliminary explanation for the properties mentioned above is proposed.  相似文献   

12.
Yang J  Gunn J  Dave SR  Zhang M  Wang YA  Gao X 《The Analyst》2008,133(2):154-160
Recent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics. MNPs made from iron oxide, in particular, have attracted extensive interest and have already been used in clinical studies owing to their capability of deep-tissue imaging, non-immunogenesis, and low toxicity. In this Research Highlight article, we attempt to highlight the recent breakthroughs in MNP synthesis based on a non-hydrolytic approach, nanoparticle (NP) surface engineering, their unique structural and magnetic properties, and current applications in ultrasensitive detection and imaging with a special focus on innovative bioassays. We will also discuss our perspectives on future research directions.  相似文献   

13.
We investigate the self-assembly of anisotropic cone-shaped particles decorated by ringlike attractive "patches". In a recent paper, we demonstrated that the self-assembled clusters, which arise due to the conical particle's anisotropic shape combined with directional attractive interactions, are precise for certain cluster sizes, resulting in a precise packing sequence of clusters of increasing sizes with decreasing cone angles (Chen et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 717-722). Here we explore the dependence of cluster packing on the cone angle and cooling rate and discuss the "stability" and "metastability" of the resulting structures as well as polymorphism of non-"magic-number" clusters. We investigate large clusters of cones and discuss the implication of our simulation results in the context of the Israelachvili packing rule for surfactants and a recent geometrical packing analysis on hard cones in the limit of large numbers of cones.  相似文献   

14.
A novel potentiometric detection strategy based on functionalized magnetic nanoparticles has been developed for rapid and sensitive sensing of polyions. Highly dispersed magnetic nanoparticles coated with ion exchanger and plasticizer could promote an in situ cooperative ion-pairing interaction between the ion exchanger and the polyion analyte in sample solution by dramatically reducing the mass-transfer distance. With applying a magnetic field, the nanoparticles can be attached to the surface of ion exchanger free polymeric membrane. The observed potential signals are related to the polyion concentrations. The proposed polymeric membrane electrode exhibits a linear relationship between the greatest potential response slope (dE/dt) and the logarithm of protamine concentration in the range of 0.05−5 μg/mL with a lower detection limit of 0.033 μg/mL.  相似文献   

15.
A novel tool for the detection of BCR/ABL fusion gene in chronic myelogenous leukemia (CML) was developed by a magneto-polymerase chain reaction (PCR)-enzyme linked gene technique. The forward primers covalently bound to the surface of magnetic nanoparticles allowed a convenient separation of PCR products with high sensitivity (0.5 pg ml(-1)) and high specificity using K562 cell line and CML patients. The results were obtained when the biotinylated-reverse primer bound to streptavidin-horseradish peroxidase (HRP) and hydrolysed the substrate. This novel readout system was approximately 1000-fold more sensitive than the conventional agarose gel electrophoresis. The present technique is practical and useful for following up CML patients and for providing appropriate treatment, particularly to patients in remote areas.  相似文献   

16.
Fu X  Chen L  Li J 《The Analyst》2012,137(16):3653-3658
A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).  相似文献   

17.
Nanometer-sized metal and semiconductor particles possess novel properties. To fully realize their potential, these nanoparticles need to be fabricated into ordered arrays or predesigned structures. A promising nanoparticle fabrication method is coupled surface passivation and self-assembly of surfactant-coated nanoparticles. Due to the empirical procedure and partially satisfactory results, this method still represents a major challenge to date and its refinement can benefit from fundamental understanding. Existing evidences suggest that the self-assembly of surfactant-coated nanoparticles is induced by surfactant-modified interparticle interactions and follows an intrinsic road map such that short one-dimensional (1D) chain arrays of nanoparticles occur first as a stable intermediate before further assembly takes place to form higher dimensional close-packed superlattices. Here we report a study employing fundamental analyses and Brownian dynamics simulations to elucidate the underlying pair interaction potential that drives the nanoparticle self-assembly via 1D arrays. We find that a pair potential which has a longer-ranged repulsion and reflects the effects of surfactant chain interdigitation on the dynamics is effective in producing and stabilizing nanoparticle chain arrays. The resultant potential energy surface is isotropic for dispersed nanoparticles but becomes anisotropic to favor the growth of linear chain arrays when self-assembly starts.  相似文献   

18.
The differential reactivity of methylmethacrylate (MMA) and vinylpyrrolidone (VP) in free radical copolymerization, with stirring in methanol, renders an emulsified two phase system. The dispersed and continuous liquid phases contain copolymers rich in MMA and VP, respectively. When Fe(3)O(4) magnetic nanoparticles (mNPs) stabilized with tetramethylammonium hydroxide are added to this emulsion, the mNPs are located in the continuous phase. Very small chemical changes in the methacrylic or vinylic chains are able to guide the mNP toward the interface or to the inside of the dispersed phase since quite a selective functionalization of each phase may be achieved separately. Thus, a small addition of methacrylic acid as comonomer (0.5% molar) guides all of the mNPs to the interface while a 0.5% molar of sulfopropyl methacrylate induces the migration of all mNPs to the dispersed phase. When 0.5% molar of a VP derivative bearing sulfonate functionality is added, the mNPs are found both in the interface and in the continuous phase. The addition of water allows solid MMA-based microspheres to be obtained incorporating the mNPs selectively either at the surface or in the core.  相似文献   

19.
Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle.  相似文献   

20.
By immobilization of protein A on the surface of magnetic Fe3O4 nanoparticles, coated with a tin(IV) hydroxide shell, we have obtained a magnetic nanosorbent selectively interacting with immunoglobulins. We have demonstrated that the sorbent obtained can be used to selectively extract immunoglobulins from biological media. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 4, pp. 204–209, July–August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号