首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Potassium peroxotitanate was synthesized by the peroxo method. During the thermal decomposition K2Ti2O5 can be obtained. The isothermal conditions for decomposition of K2[Ti2(O2)2(OH)6]·3H2O were determined on the base of DTA, TG and DSC results. DTA and TG curves were recorded in the temperature range 20 and 900°C at a heating rate of 10°C min–1. The obtained intermediate compounds were characterized by means of quantitative analysis and IR spectroscopy. The mechanism of thermal decomposition of K2[Ti2(O2)2(OH)6]·3H2O to K2Ti2O5 was studied. The optimal conditions for obtaining K2Ti2O5 were determined (770°C for 10 h).  相似文献   

2.
3.
Information about the kinetics and thermal decomposition of dicumyl peroxide (DCPO) is required for safety concerns, due to its wide applications and accident cases. To understand the inherent hazards during DCPO manufacturing, we selected various concentrations in different stages and analyzed them by differential scanning calorimetry (DSC). We evaluated thermokinetic parameters to set up a simple, but comprehensive kinetic model, with various tests conducted at heating rates of 2, 4, 6 and 10°C min-1 . Subsequently, we established a more efficient, resource-effective, and cost-effective model of safety evaluation for DCPO with different concentrations, according to thermokinetic parameters, such as activation energy Ea is 125.35 kJ mol-1 , frequency factor k0 is 3.124·10 12 s-1 , reaction order n is 0.9 and heat of decomposition ΔH is 750.52 J g-1 for DCPO 99 mass%.  相似文献   

4.
Nanometer MgO samples with high surface area, small crystal size and mesoporous texture were synthesized by thermal decomposition of MgC2O4 · 2H2O prepared from solid-state chemical reaction between H2C2O4 · 2H2O and Mg (CH3COO)2 · 4H2O. Steam produced during the decomposition process accelerated the sintering of MgO, and MgO with surface area as high as 412 m2 · g−1 was obtained through calcining its precursor in flowing dry nitrogen at 520°C for 4 h. The samples were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, thermogravimetry, and differential thermal analysis. The as-prepared MgO was composed of nanocrystals with a size of about 4–5 nm and formed a wormhole-like porous structure. The MgO also had good thermal stability, and its surface areas remained at 357 and 153 m2·g−1 after calcination at 600 and 800°C for 2 h, respectively. Compared with the MgO sample prepared by the precipitation method, MgO prepared by solid-state chemical reaction has uniform pore size distribution, surface area, and crystal size. The solid-state chemical method has the advantages of low cost, low pollution, and high yield, therefore it appears to be a promising method in the industrial manufacture of nanometer MgO. Translated from Chinese Journal of Catalysis, 2006, 27(9): 793–798 (in Chinese)  相似文献   

5.
Thermal hazard evaluation of carbon nanotubes with sulfuric acid by DSC   总被引:2,自引:2,他引:0  
Many concerns over unsafe or unknown properties of multi-walled carbon nanotubes (MWNTs) have been raised. The thermal characteristics regarding stability would represent potential hazards during the production or utilization stage and could be determined by calorimetric tests for various thermokinetic parameters. Differential scanning calorimetry (DSC) was employed to evaluate the thermokinetic parameters for MWNTs at various compositions. Thermoanalytical curves showed that the average heat of decomposition (ΔH d) of the MWNTs samples in a manufacturing process was about 31,723 J g−1, by identifying them as an inherently hazardous material. In this study, significant thermal analysis appeared in the presence of sulfuric acid (H2SO4). From the DSC experiments, the purification process of MWNTs could induce an unexpected reaction in the condition of batch addition with reactants of H2SO4. The results can be applied for designing emergency relief system and emergency rescue strategies during a perturbed situation or accident.  相似文献   

6.
The results obtained showed that the addition of small amounts of LiNO3 to the reacting mixed solids, consisting of equimolar proportion of Fe2O3 and basic MgCO3 much enhanced the thermal decomposition of magnesium carbonate. The addition of 12 mol% LiNO3 (6 mol% Li2O) decreased the decomposition temperature of MgCO3 from 525.5 to362°C. MgO underwent solid–solid interaction with Fe2O3 at temperatures starting from800°C yielding MgFe2O4. The amount of ferrite produced increased by increasing the precalcination temperature of the mixed solids. However, the completion of this reaction required prolonged heating at elevated temperature above 1100°C. Doping with Li2O much enhanced the solid–solid interaction between the mixed oxides leading to the formation of MgFe2O4 phase at temperatures starting from 700°C. The addition of 6 mol% Li2O to the mixed solids followed by precalcination at 1050°C for 4 h resulted in complete conversion of the reacting oxides into magnesium ferrite. The heat treatment of pure and doped solids at 900–1050°C effected the disappearance of most of IR transmission bands of the free oxides with subsequent appearance of new bands characteristic for MgFe2O4 structure. The promotion effect of Li2O towards the ferrite formation was attributed to an effective increase in the mobility of the various reacting cations. The activation energy of formation (ΔE) of magnesium ferrite was determined for pure and variously doped solids and the values obtained were 203, 126, 95 and 61 kJ mol−1 for pure mixed solids and those treated with 1.5, 3.0 and 6.0 mol% Li2O, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H2SO4, the experimental data of T 0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.  相似文献   

8.
Three thermal effects on heating/cooling of K2TaF7 in the temperature interval of 680–800°C were investigated by the DSC method. The values determined for the enthalpy change of the individual processes are: ΔtransIIHm(K2TaF7; 703°C) = 1.7(2) kJ mol−1, ΔtransIHm(K2TaF7; 746°C) = 19(1) kJ mol−1 and ΔtransIIIHm(K2TaF7; 771°C) = 13(1) kJ mol−1. The first thermal effect was attributed to a solid-solid phase transition; the second to the incongruent melting of K2TaF7 and the third to mixing of two liquids. These findings are supported by in situ neutron powder diffraction experiments performed in the temperature interval of 654–794°C.   相似文献   

9.
The thermal behaviour of CrO3 on heating up to 600°C in dynamic atmospheres of air, N2 and H2 was examined by thermogravimetry (TG), differential thermal analysis (DTA), IR spectroscopy and diffuse reflectance spectroscopy (DRS). The results revealed three major thermal events, depending to different extents on the surrounding atmosphere: (i) melting of CrO3 near 215°C (independent of the atmosphere), (ii) decomposition into Cr2(CrO4)3 at 340–360°C (insignificantly dependent), and (iii) decomposition of the chromate into Cr2O3 at 415–490°C (significantly dependent). The decomposition CrO3 → Cr2(CrO4)3 is largely thermal and involves exothermic deoxygenation and polymerization reactions, whereas the decomposition Cr2(CrO4)3 → Cr2O3 involves endothermic reductive deoxygenation reactions in air (or N2) which are greatly accelerated and rendered exothermic in the presence of H2. TG measurements as a function of heating rate (2–50°C min−1) demonstrated the acceleratory role of H2, which extended to the formation of Cr(II) species. This could sustain a mechanism whereby H2 molecules are considered to chemisorb dissociatively, and then spillover to induce the reduction. DTA measurements as a function of the heating rate (2–50°C min−1) helped in the derivation of non-isothermal kinetic parameters strongly supportive of the mechanism envisaged. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
SrAl2O4:Eu2+, Dy3+ powders were synthesized by sol–gel–combustion process using metal nitrates as the source of metal ions and citric acid as a chelating agent of metal ions. The amounts of citric acid in mole were two times those of the metal ions. By tracing the formation process of the sol–gel, it is found that decreasing the amount of NO3 in the solution is necessary for the formation of transparent sol and gel, and the dropping of ethanol into the precursor solution can decrease the amount of NO3 in the solution. By combusting citrate sol at 600 °C, followed by heating the resultant combustion ash at 1,100–1,300 °C in a weak reductive atmosphere containing active carbon, SrAl2O4:Eu2+, Dy3+ phosphors can prepared. X-ray diffraction, Thermogravimetry–differential thermal analysis, scanning electron microscopy and fluorescence spectrophotometer were used to investigate the formation process and luminescent properties of the as-synthesized SrAl2O4:Eu2+, Dy3+. The results reveal that the SrAl2O4 crystallizes completely when the combustion ash was sintered at 1,200–1,300 °C. The excitation and emission spectra indicate that excitation broadband mainly lies in a visible range and the phosphors emit strong light at 510 nm under the excitation of 348 nm. The afterglow of phosphors lasts for over 10 h when the excited source is cut off.  相似文献   

11.
Investigation of RuO2-IrO2-SnO2 thin film evolution   总被引:2,自引:0,他引:2  
The thermal evolution process of RuO2–IrO2–SnO2 mixed oxide thin films of varying noble metal contents has been investigated under in situ conditions by thermogravimetry-mass spectrometry (TG-MS), infrared emission spectroscopy (IR) and cyclic voltammetry (CV). The gel-like films prepared from aqueous solutions of the precursor compounds RuOHCl3, H2IrCl6 and Sn(OH)2(CH3COO)2–xClx on titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600°C. Chlorine evolution takes place in a single step between 320 and 500°C accompanied with the decomposition of the acetate ligand. The decomposition of surface species formed like carbonyls, carboxylates and carbonates occurs in two stages between 200 and 500°C. The temperature of chlorine evolution and that of the final film formation increases with the increase of the iridium content in the films. The anodic peak charge shows a maximum value at 18% iridium content.  相似文献   

12.
Mesoporous TiO2/γ-Al2O3 composite granules were prepared by combining sol–gel/oil-drop method, using various titania solution. The product granules can be used as a photocatalyst or adsorbent in moving, fluidized bed reactors. The phase composition and pore structure of the granules can be controlled by calcination temperature and using different titania solution. In the photocatalysis of NH3 decomposition, TiO2/γ-Al2O3 granules using Degussa P25 powder treated thermally at 450 °C showed the highest catalytic ability. However, TiO2/γ-Al2O3 granules using titania made by hydrothermal method had comparable performance in NH3 decomposition.  相似文献   

13.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

14.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

15.
The formation ofβ-phase Bi2Mo2O9 catalyst from a precursor precipitate has been studied using thein situ combined XRD/QuEXAFS technique and DSC during calcination. Accordingly the precursor was observed to undergo a number of changes in both the molybdenum (VI) coordination and long-range ordering during this heating. Initially the two other forms of bismuth molybdate (α-andγ-phases) were observed to form from the poorly crystalline precursor at about 230°C, however, theβ-phase eventually crystallised after prolonged heating at 560°C. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

16.
A novel sol–gel synthetic route using water-soluble precursor salts is presented as a synthetic path for a high-purity negative thermal expansion material, ZrW2O8. This synthetic route involves a sol–gel method with the use of EDTA as complexing agent. The aqueous solution is transformed into a ceramic material after a two-step heat treatment: gelation at 60 °C and reactive sintering at 1,180 °C. The decomposition of the gel is monitored with infrared spectroscopy and TGA. The high-temperature heat treatment results in ZrW2O8 with its characteristic negative thermal expansion behaviour α[75–130 °C]: −9.8 ± 1.6 μm/m °C and α[175–300 °C]: −1.2 ± 0.2 μm/m °C.  相似文献   

17.
Gamma radiolysis of oxygenated 1–10 mM azide solutions was carried out at various pH values. In oxygenated 10 mM azide solutions, H2O2 and NO 2 were observed as radiolytic products while NH3 was not. The concentration of H2O2 reached its maximum level at a dose of 1 kGy, whereas NO 2 yield increased non-linearly beyond 2 kGy in this system. Both in aerated and oxygenated systems, G(NO 2 ) and G(H2O2) were found to vary with N 3 concentration. The yield of NO 2 was found to be dependent on both dose rate and pH. On pulse radiolysis, NO 2 was found as a radiolytic product in aerated 1 mM azide solution at pH 6.8. In this system the intermediate generated exhibits absorbance around 250 nm. The overall results obtained during the present study reveal that in presence of both reducing radical (mainly e aq ) and oxygen, N 3 produced an intermediate possibly NH2O 2 radical, which is the prime source for NO 2 generation.  相似文献   

18.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

19.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

20.
Al2O3/ZrO2 duplex films were deposited on a γ-TiAl based alloy by sol–gel processing starting from aluminum isopropoxide (Al(OC3H7)3) and zirconium (IV) oxychloride octahydrate (ZrOCl2 · 8H2O) as raw materials. Isothermal oxidation at 900 and 1,000 °C in 0.1 MPa O2 and cyclic oxidation at 1,000 °C in air of the coated and uncoated specimens were performed to investigate the effect of the duplex films on the oxidation behavior of the γ-TiAl alloy. The results of the isothermal oxidation tests indicated that the parabolic rate constants of the alloy were decreased due to the applied thin film. Additionally, the present film exhibited a beneficial effect on the cyclic oxidation resistance of the alloy in air. The duplex film could restrain the growth of TiO2, causing an increase of the Al2O3 content in the oxide mixture and thus decreased the oxidation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号