首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal biosorption by bacterial cells   总被引:9,自引:0,他引:9  
Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated qmax. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. Received: 31 July 1997 / Revised: 22 December 1997 / Accepted: 30 December 1997  相似文献   

2.
Heavy metal removal by biosorption using Phanerochaete chrysosporium   总被引:2,自引:0,他引:2  
Biosorption using microbial cells as adsorbents is being seen as a cost-effective method for the removal of heavy metals from wastewaters. Biosorption studies with Phanerochaete chrysosporium were performed for copper (II), lead (II), and cadmium (II) to evaluate the effectiveness and to optimize the operational parameters using response surface methodology. The operational parameters chosen were initial metal ion concentration, pH, and biosorbent dosage. Using this method, the metal removal could be correlated to the operational parameters, and their values were optimized. The results showed fairly high adsorptive capacities for all the metals within the settings of the operational parameters. The removal efficiencies followed the order Pb>Cu>Cd. As a general trend, metal removal efficiency decreased as the initial metal ion concentration increased, and the results fitted the Langmuir and Freundlich isotherms well.  相似文献   

3.
Properties of metal solution, environmental conditions and the type of biomaterials (microorganism genus, species or even strain) influence the mechanism of metal biosorption and consequently metal adsorption capacity, affinity and specificity. Cell surface properties determine the metal-microorganism interactions to a large extent. In this work the relationship between yeast surface properties and yeast’s ability to bind cadmium, lead and copper was studied. Surface charge and hydrophobicity before and after biosorption were determined using dye retention and solvent partition assays, respectively. There were differences in the surface charge and relative hydrophobicity among different yeast strains. A higher metal adsorption capacity for more negatively charged yeast cells was observed. Biosorption of heavy metals resulted in modifications to the surface charge and hydrophobicity of yeast cells. However, there were not statistically significant changes in the yeast surface charge and hydrophobicity after binding of heavy metals depending on the nature of the metal, initial metal concentration and solution pH.  相似文献   

4.
The excellent gelation and metal biosorption properties of Na-alginate in acidic metal ion solution were advantageous for the preparation of the Bi-based superconducting fibers. 0.67 mol/l nitric acid solution and acidic mixed metal nitrates solution of Bi, Pb, Sr, Ca and Cu were used for the gelation and the biosorption, respectively. A stretched and dried gel having uniform diameter and unlimited length was obtained as the precursor. The superconducting fiber, which was principally constructed of the mixture of 2212 and 2223 phase, was prepared by sintering the precursor in an air atmosphere at a temperature of 1104 K for about 40 h. The optimum ratio of metal ions in the solution was determined on the basis of the analysis of the metal components of the precursor or fiber using an atomic absorbence spectrometer and X-ray fluorescence spectrometer. The effect of HNO3 on the biosorption of five kinds of metal was discussed and the conclusion of sintering process and the inspection of superconducting phase were performed by DSC., TG, IR and XRD experiments.  相似文献   

5.
Studies were conducted toinvestigate the removal and recovery of copper (II) ions from aqueous solutions by Micrococcus sp., which was isolated from a local activated sludge process. The equilibrium of copper biosorption followed the Langmuir isotherm model very well with a maximum biosorption capacity (qmax) of 36.5 mg of Cu2+/gofdry cell at pH 5.0 and 52.1 mg of Cu2+/g of dry cell at pH 6.0. Cells harvested at exponential growth phase and stationary phase showed similar biosorption characteristics for copper, Copper uptake by cells was negligible at pH 2.0 and then increased rapidly with increasing pH un til 6.0. In multim etal systems, Micrococcus sp. exhibited a preferential biosorption order: Cu−Pb>Ni−Zn. There is virtually no interference with copper uptake by Micrococcus sp. from solutions bearing high concentrations of Cl, SO 4 2− , and NO3/− (0–500 mg/L). Sulfuric acid (0.05 M) was the most efficient desorption medium, recovering >90% of the initial copper sorbed. The copper capacity of Micrococcus sp. remained unchanged after five successive sorption and desorption cycles. Immobilization of Micrococcus sp. in 2% calcium alginate and 10% polyacrylamide gel beads increased copper uptake by 61%. Biomass of Micrococcus sp. may be applicable to the development of potentially cost-effective biosorbent for removing and recovering copper from effluents.  相似文献   

6.
7.
王杰 《高分子科学》2014,32(4):432-438
Nano-sized spherical polymer brushes(SPBs) consisting of both a polystyrene(PS) core and a brush shell of poly(acrylic acid)(PAA), poly(N-acrylcysteamine)(PSH), or poly(N-acrylcysteamine-co-acrylic acid)(P(SH-co-AA)), were prepared by photo-emulsion polymerization. The core-shell structure was observed by dynamic light scattering and transmission electron microscopy. Due to the strengthened Donnan effect, the PAA brush can adsorb heavy metal ions. Effects of the contact time, thickness of PAA brush and pH value on the adsorption results were investigated. Due to the coordination between the mercapto groups and heavy metal ions as well as the electrostatic interactions, SPBs with mercapto groups are capable to remove heavy metal ions selectively from aqueous solutions. The order of adsorption capacity of the heavy metal ions by SPBs with mercapto groups is: Hg2+ ≈ Au3+ Pb2+ Cu2+ Ni2+. The adsorbed heavy metal ions can be eluted from SPB by aqueous HCl solution, and the SPBs can be recovered. After three regenerations the recovered SPBs still maintain their adsorption capacity.  相似文献   

8.
9.
Instrumental Neutron Activation Analysis (INAA) is employed for its important analytical properties. Fundamentally, INAA is a multi-elemental technique allowing the determination of about 40 elements with a good Limit of Detection. In this paper we applied this nuclear technique to study the element composition in PM10 determining about 30 elements.25 filters were collected in downtown Rome from October 1999 to April 2000 and irradiated at the nuclear reactor Triga Mark II (ENEA-Casaccia Laboratories). The γ-ray measurements have allowed the quali- and quantitative analysis. The element levels in PM10 with the relative correlations have been determined: basically, the concentrations are very low.Furthermore, the enrichment factors of all elements will be reported in order to understand the natural or anthropogenic origins of the particulate matter: some elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources.  相似文献   

10.
Using functionalized calix[4]arene carrier 1 in a PIM system, Hg(II) is transported with high selectivity from acidic aqueous source phase solutions of Cd(II), Hg(II) and Pb(II) with high NaNO3 concentration into aqueous receiving solutions containing EDTA. To gain insight into this transport selectivity, complexation studies of the three heavy metal perchlorate species by ligand 1 were conducted in acetonitrile. Although 1:1 complexation of the divalent heavy metal cation by 1 was observed for Cd(II), the stoichiometries were more complicated for Hg(II) and Pb(II). Selective Hg(II) transport across the PIM is attributed to both the strength and stoichiometry of the metal ion-carrier species forming at the source phase-membrane interphase and its stripping from the membrane into the receiving phase by EDTA.  相似文献   

11.
The presence of heavy metals in environmental waters having an important place in the industrial waste is a major threat to viability. Heavy metals are transported to humans through the ecological cycle, damaging many tissues and organs. In recent years, agricultural and food waste can be used to remove heavy metals. At the present study, magnetically modified coffee grains which are alternative to conventional particle systems were prepared and heavy metal removal performances were investigated. The coffee grains used were magnetically modified by contact with water-based magnetic fluid. Magnetically modified coffee grains were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analysis and electron spin resonance (ESR). Adsorption studies are made with four different heavy metal ions, namely Cu(II), Pb(II), Cd(II) and Zn(II). Adsorption isotherms were determined and heavy metal removal performance of magnetic coffee grains were investigated from synthetic waste water.  相似文献   

12.
The present study was carried out in a batch system using a lichen (Pseudevernia furfuracea (L.) Zopf) for the sorption of nickel(II) and copper(II) ions from water. Particularly, the effect of pH, contact time and temperature were considered. Pseudevernia furfuracea exhibited nickel(II) and copper(II) uptake of 49.87 and 60.83 mg/g at an initial pH of 4 and 5-6 at 35 degrees C respectively. Both the Freundlich and Langmuir adsorption models were suitable for describing the biosorption of nickel(II) and copper(II) by the biosorbent. Biosorption showed pseudo first order rate kinetics for nickel and copper ions. Using the equilibrium constant values obtained at 25 and 35 degrees C, the thermodynamics properties of the biosorption (deltaG degrees, deltaH degrees and deltaS degrees) were determined. The biosorption of nickel(II) and copper(II) onto Pseudevernia furfuracea was found to be endothermic.  相似文献   

13.
Results of copper ion sorption in lichens owing to the ion exchange between the surroundings (aqueous solution) and the lichen cationactive layer have been presented. It indicates that the course of sorption of these ions, similarly as in the case of cations of other heavy metals, depends on the concentration and type of cations naturally found in lichen surroundings: H+, Na+, K+, Mg2+ and Ca2+. A determination method of heavy metal concentration in lichen surroundings has been proposed. It consists in exposure of transplanted lichens in the presence of salts that provide precisely determined, artificial salinity of precipitation with which the lichens are in contact. The studies were conducted on Hypogymnia physodes lichens.  相似文献   

14.
Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.  相似文献   

15.
The use of a number of species of marine brown algae in the implementation of bioremediation strategies for toxic heavy metals is being considered and evaluated. The biosorption capacity of these algae for heavy metals resides mainly in a group of linear polysaccharides known as alginates that occur as a gel in the algal thallus. The potential for selective metal binding by the biomass of two species of Sargassum was evaluated by 1H-NMR (nuclear magnetic resonance) following a high temperature, alkaline extraction and purification of their alginate polysaccharide. The alkaline extraction protocol applied to Sargassum fluitans and Sargassum siliquosum yielded alginate samples of low viscosity, suitable for direct acquisition of well-resolved spectra. Estimates of both the ratio of β-d-mannopyranuronosyl (M) and α-l-gulopyranuronosyl (G) residues along the polymer chain and the frequencies of occurrence of diad uronic acid residue pairs were obtained. Guluronic acid (G) was the major component in all, extracts and the GG diads accounted for more than 49% of the polymer diads. Whereas the performance of Sargassum spp. in the metal biosorption process is a function of both its alginate content and composition, the occurrence of “G-blocks” in both purified alginates and in the raw brown seaweed is critical because it results in a well-established selectivity for divalentions, potentially increasing the commercial effectiveness of targeted biosorption as a means of remediation.  相似文献   

16.
Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae was studied in a batch system. The influence of contact time, initial pH, temperature and initial concentration was investigated. The optimal conditions were found to be 3.5?h of contact time and pH?=?4.5. Temperature had no significant effect on adsorption. The uptake of uranyl ions was relatively fast and 85?% of the sorption was completed within 10?min. The experimental data were well fitted with Langmuir isotherm model and pseudo-second order kinetic model. According to this kinetic model, the sorption capacity and the rate constant were 0.455?mmol UO2 2+/g dry biomass and 1.89?g?mmol?1?min?1, respectively. The Langmuir isotherm indicated high affinity and capacity of the adsorbent for uranyl biosorption with the maximum loading of 0.477?mmol UO2 2+/g dry weight.  相似文献   

17.
Competitive biosorption of thorium and uranium by Micrococcus luteus   总被引:2,自引:0,他引:2  
Lichens, sampled around Chernobyl in 1990 and in Slovenia in 1992, were analyzed for radionuclides and elements, including Cs. Data were processed by Monte Carlo aided Target Transformation Factor (MCTTFA). The resulting factors indicate environmental accumulation routes. 40K : K and 210Pb : Pb ratios tested the procedure, showing fully mixed 40K and K, while for 210Pb and Pb the expected variability in specific radioactivity was confirmed. 137Cs showed a large factor-specific variability in 137Cs : Cs ratios. For the 1990 data, MCTTFA singled-out 137Cs in a separate factor, suggesting that the overall behavior of 137Cs cannot be derived from that of Cs: source (route)-related specific radioactivity makes that all individual transport-components should be taken into account.  相似文献   

18.
19.
New analytical procedures and sample mineralizations are proposed regarding the determination of arsenic, selenium, copper, lead, cadmium, zinc and mercury in matrices involved in food chain as mussel, clams and fishes. As regard As, Se, Cu, Pb, Cd and Zn determinations, H2SO4-HNO3 acidic mixture is used for the digestion of each matrix. In the case of Hg the sample digestion is performed using a concentrated suprapure H2SO4-K2Cr2O7 mixture and the results are compared with those from other conventional methods. Differential pulse cathodic (DPCSV) and anodic stripping voltammetry (DPASV) are employed for determining simultaneously selenium, arsenic and copper, lead, cadmium, zinc, respectively, while mercury determination is carried out by the cold vapour atomic absorption spectrometry (CV-AAS) with reduction with SnCl2. The voltammetric measurements were performed using a conventional three-electrode cell and the ammonia-ammonium chloride buffer (pH 9.3) as supporting electrolyte. For all the elements, in addition to the detection limits, precision and accuracy data are also reported: the former, expressed as relative standard deviation (Sr), and the latter, expressed as relative error (e), are in all cases between 3 to 6%.  相似文献   

20.
The ability of microorganisms to adhere to abiotic surfaces and the potentialities of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy have been exploited to study protonation and heavy metal binding events onto bacterial surfaces. This work represents the first attempt to apply on bacteria the recently developed method known as perfusion-induced ATR-FTIR difference spectroscopy. Such a technique allows measurement of even slight changes in the infrared spectrum of the sample, deposited as a thin layer on an ATR crystal, while an aqueous solution is perfused over its surface. Solutions at different pH have been used for inducing protonation/deprotonation of functional groups lying on the surface of Rhodobacter sphaeroides cells, chosen as a model system. The interaction of Ni(2+) with surface protonable groups of this microorganism has been investigated with a double-difference approach exploiting competition between nickel cations and protons. Protonation-induced difference spectra of simple model compounds have been acquired to guide band assignment in bacterial spectra, thus allowing identification of major components involved in proton uptake and metal binding. The data collected reveal that carboxylate moieties on the bacterial surface of R. sphaeroides play a role in extracellular biosorption of Ni(2+), establishing with this ion relatively weak coordinative bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号