首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metal biosorption by bacterial cells   总被引:9,自引:0,他引:9  
Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated qmax. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. Received: 31 July 1997 / Revised: 22 December 1997 / Accepted: 30 December 1997  相似文献   

2.
This study investigated the feasibility of Fusarium solani biomass as a biosorbent for Cu(II) and Pb(II) removal from aqueous solutions. Batch sorption experiments were carried out for Cu(II) and Pb(II) to quantify the sorption kinetics, pH, biosorbent dose and pretreatment of F. solani biomass. Biomass metal uptake clearly competed with protons present in the aqueous medium, making pH an important variable in the process. The maximum biosorption by F. solani biomass was obtained with solutions having pH 5 for both metal ions. An enhanced Cu(II) removal (96.53%) was observed for aluminum hydroxide pretreated biomass. Maximum Pb(II) removal (95.48%) was observed with native biomass. Time dependence experiments for the metal ions uptake showed that adsorption equilibrium reached almost 240 min after metal addition. The kinetic studies showed that the biosorption process followed the pseudo second‐order rate model for Cu(II) and Pb(II). The equilibrium data fitted well to the Langmiur isotherm model.  相似文献   

3.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

4.
We have developed a novel approach to obtain high metal sorption capacity utilizing a membrane containing chitosan and an immobilized reactive dye (i.e. Reactive Yellow-2). The composite membrane was characterized by SEM, FT-IR, swelling test, and elemental analysis. The membrane has uniform small pores distribution and the pore dimensions are between 5 and 10 μm, and the HEMA:chitosan ratio was 50:1. The reactive dye immobilized composite membrane was used in the removal of heavy metal ions [i.e., Pb(II), Hg(II) and Cd(II)] from aqueous medium containing different amounts of these ions (5-600 mg l−1) and at different pH values (2.0-7.0). The maximum adsorption capacities of heavy metal ions onto the composite membrane under non-competitive conditions were 64.3 mmol m−2 for Pb(II), 52.7 mmol m−2 for Hg(II), 39.6 mmol m−2 for Cd(II) and the affinity order was Pb(II) > Hg(II)>Cd(II).  相似文献   

5.
6.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

7.
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/N‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5–8.  相似文献   

9.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

10.
Thioacetamide immobilized on silica gel was prepared via the Mannich reaction. The extraction and enrichment of copper(II), lead(II), and cadmium(II) ions from aqueous solutions has been investigated. Conditions for effective extraction are optimized with respect to different experimental parameters in both batch and column processes prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH ranges for quantitative adsorption are 4.0-8.0, 2.0-7.0, and 5.0-10.0 for Pb(II), Cu(II), and Cd(II), respectively. Pb(II) and Cd(II) can be desorbed with 3 mol/L and 0.1 mol/L HCl/HNO3, and Cu(II) can be desorbed with 2.5% thiourea. The adsorption capacity of the matrix has been found to be 19.76, 16.35, and 12.50 mg/g for Pb(II), Cu(II), and Cd(II), respectively, with the preconcentration factor of approximately equal to 300 for Pb(II) and approximately equal to 200 for Cu(II) and Cd(II). Analytical utility is illustrated in real aqueous samples generated from distilled water, tap water, and river water samples.  相似文献   

11.
Heavy metal contamination of waters and soils is particularly dangerous to the living organisms. Different studies have demonstrated that hydroxyapatite has a high removal capacity for divalent heavy metal ions in contaminated waters and soils. The removal of Cd from aqueous solutions by hydroxyapatite was investigated in batch conditions at 25+/-2 degrees C. Cadmium was applied both as single- or multi-metal (Cd + Pb + Zn + Cu) systems with initial concentrations from 0 to 8 mmol L(-1). The adsorption capacity of hydroxyapatite in single-metal system ranged from 0.058 to 1.681 mmol of Cd/g of hydroxyapatite. In the multi-metal system competitive metal sorption reduced the removal capacity by 63-83% compared to the single-metal system. The sorption of Cd by hydroxyapatite follows the Langmuir model. Cadmium immobilization occurs through a two-step mechanism: rapid surface complexation followed by partial dissolution of hydroxyapatite and ion exchange with Ca resulting in the formation of a cadmium-containing hydroxyapatite.  相似文献   

12.
Different metal-complexing ligands carrying synthetic adsorbents have been reported in the literature for heavy metal removal. We have developed a novel and new approach to obtain high metal adsorption capacity utilizing 2-methacrylamidohistidine (MAH) as a metal-complexing ligand. MAH was synthesized by using methacrylochloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and 2-hydroxyethylmethacrylate (HEMA) conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA-co-MAH) beads had a specific surface area of 17.6 m2 g−1. Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling studies, FTIR and elemental analysis. These p(HEMA-co-MAH) affinity beads with a swelling ratio of 65%, and containing 1.6 mmol MAH g−1 were used in the adsorption/desorption of copper(II) ions from metal solutions. Adsorption equilibria was achieved in ∼2 h. The maximum adsorption of Cu(II) ions onto pHEMA was ∼0.36 mg Cu(II) g−1. The MAH incorporation significantly increased the Cu(II) adsorption capacity by chelate formation of Cu(II) ions with MAH molecules (122.7 mg Cu(II) g−1), which was observed at pH 7.0. pH significantly affected the adsorption capacity of MAH incorporated beads. The observed adsorption order under non-competitive conditions was Cu(II)>Cr(III)>Hg(II)>Pb(II)>Cd(II) in molar basis. The chelating beads can be easily regenerated by 0.1 M HNO3 with higher effectiveness. These features make p(HEMA-co-MAH) beads very good candidate for Cu(II) removal at high adsorption capacity.  相似文献   

13.
Modified crosslinked polyacrylamides having different functional groups prepared by transamidation reaction in aqueous and non‐aqueous medium and by Hofmann reaction were used as chelating agents for removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions at different pH values. Under non‐competitive conditions, polymers adsorbed different amounts of metal ions, depending on their functional groups and swelling abilities. The metal ion adsorption capacities of polymers changed between 0.11–1.71 mmol/g polymer. Under competitive conditions, while the polymers having mainly secondary amine groups were highly selective for Cu(II) ions (99.4%), those having mainly secondary amide and carboxylate groups have shown high selectivity towards Pb(II) ions (99.5%). The selectivity towards Cu(II) ion decreased and Pb(II) ion selectivity increased by the decrease of the pH of the solutions. The high initial adsorption rate (<10 min) suggests that the adsorption occurs mainly on the polymer surface. A regeneration procedure by treatment with dilute HCl solution showed that the modified polymers could be used several times without loss of their adsorption capacities.  相似文献   

14.
In the present work the hydrophobic β-cyclodextrin (β-CD) polymers have been used as macrocyclic ion carriers for separation of Pb(II), Zn(II), and Cu(II) ions from dilute aqueous solutions by transport across polymer inclusion membranes. The β-CD polymers were prepared by cross-linking of β-CD with 2-(1-docosenyl)-succinic anhydride derivatives in anhydrous N,N-dimethylformamide in the presence of NaH. The metal ions were transported from aqueous solutions containing heavy metal ions through plasticizer triacetate membranes with dimer and polymer β-CD derivatives into distilled water. The selectivity of lead(II) over other metal ions in the transport through polymer inclusion membrane was very high, especially for dimer cyclodextrin carrier. In the case of competitive transport of Pb(II), Cu(II), and Zn(II) ions through plasticized immobilized membranes the selectivity of process is controlled via formation of ion pairs of β-CD hydroxyl groups with metal cations. The polymer and dimer of β-CD linked by 2-(1-docosenyl)-derivative used as ionic carriers for competitive transport of metal ions show preferential selectivity order: Pb(II)  Cu(II) > Zn(II). Application of ion carriers mixtures (β-CD polymers and palmitic acid) causes the increase of Pb(II) maximal removal from dilute aqueous solution. The weight-average molecular weight (MW) and the chemical structure of the β-CD polymers were determined using high-performance size exclusion chromatography with refractive index detector, and 1H NMR spectroscopy.  相似文献   

15.
A novel optimized chelating hydrogel was synthesized via graft copolymerization of acrylamide and 2‐hydroxyethyl methacrylate (as two‐dentate chelating co‐monomer) onto salep (a multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids) using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Reaction parameters (N,N′‐methylenebisacrylamide and ammonium persulfate amounts as well as acrylamide/2‐hydroxyethyl methacrylate weight ratio) affecting the water absorption of the chelating hydrogel were optimized using a systematic method to achieve a hydrogel with high swelling capacity as possible. Heavy metal ion adsorption capacity of the optimized hydrogel for metal ions [Cu (II), Pb (II), Cd (II), and Cr (III)] were investigated in aqueous media containing different concentrations of these ions (5–50 ppm). The results showed that the hydrogel have great potential for heavy metal removal from aqueous solutions. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy, and surface morphology study of the hydrogel was performed by scanning electron microscope. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Crosslinked acrylonitrile/acrylamidoxime/2-acrylamido-2-methylpropane sulfonic acid (AN/AAx/AMPS) based hydrogels was prepared by radical solution polymerization technique. The structures of hydrogels were characterized by FTIR analysis and the results were consistent with the expected structures. These hydrogels were used for the separation of Cd(II), Cu(II), and Fe(III) ions from their aqueous solutions. The influence of the uptake conditions such as pH, time, and initial feed concentration on the metal ion binding capacity of hydrogel was also tested. The selectivity of the hydrogel toward the different metal ions tested was Cd(II)>Fe(III)>Cu(II). The recovery of metal ions was also investigated in acid media.  相似文献   

17.
The leached residue, generated after selective extraction of Cu, Ni, and Co in sulfur dioxide-ammonia leaching of manganese nodules, was characterized and batch isothermal adsorption experiments were conducted at ambient temperature to evaluate the effectiveness of the water-washed leached residue for removal of different bivalent metal ions from aqueous synthetic solutions. The effects of pH, initial metal ion concentrations, amount of adsorbent, interfering ions, and heat treatment were also investigated. The uptake of metal ions increased with increasing pH. Under identical conditions the adsorption capacity increased in the order Cd(2+)相似文献   

18.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

20.
ImmobilizedZoogloea and zooglan in calcium alginate-silica matrix was shown to have a high adsorption capacity for Cu and Cd ions. Our results showed that Cu-ion uptake in the presence of Ca and Mg ions can be enhanced using immobilizedZoogloea and zooglan. Heavy metal ion adsorption efficiency decreased in the following order: Cu > Cd > Zn > Cr. The adsorbed metal ions were desorbed completely using sulfuric acid. ImmobilizedZoogloea and zooglan which was repetitively regenerated adsorbed heavy metal ions without a loss of adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号