首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

2.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   

3.
Novel diorganotin(IV) compounds (L1,2)2SnCl2, where L1,2 are O,C,O-chelating ligands (called the pincer ligands), 2,6-bis(alkoxymethyl)phenyl-, , (L1, R = Me, L2, R = t-Bu), have been synthesized and characterized by 1H, 13C and 119Sn NMR spectroscopy, MS-ESI spectrometry and elemental analysis. The structure of both compounds (L1)2SnCl2 (1) and (L2)2SnCl2 (2) was determined by X-ray crystallography. Determination of crystal structures reveals different shapes of coordination polyhedra. While deformed octahedron was found for 1, tetrahedral geometry of the tin atom was determined for 2. The NMR spectroscopy indicates a similar structural arrangement of 1 and 2 in solution. The reaction of 1 with silver salts of low nucleophilic anions X (X = OTf and 1-CB11H12) resulted in (L1)2SnCl(OTf) (3), (L1)2Sn(OTf)2 (4), and (L1)2SnCl(CB11H12) (5). The compounds 4 and 5 are of ionic nature both in solid state and in solution of CH3CN.  相似文献   

4.
Reaction of tin tetrachloride with the appropriate Grignard reagent gave Sn[C6H4-CH(OCH2)2]4 (2), which was transformed to Sn[C6H4-CHO]4 (3) and its hydrazido and amino derivatives Sn[C6H4-CHN-NH-C6H3-2,4-(NO2)2]4 (5) and Sn{C6H4-CH[N(C2H4)2O]2}4 (8). Oxidation of (3) produced Sn[C6H4-COOH]4 (4) while reduction of (3) gave Sn[C6H4-CH2-OH]4 (6). From the acid 4, an amino acid Sn[C6H4-CO-NH-CH2-CO-OCH3]4 (7) could be obtained by reaction with the methyl ester of glycine. All compounds were isolated in pure form with yields of 40-64% and were characterised by spectroscopic means (heteronuclear NMR) or by X-ray structure determination (3).  相似文献   

5.
A series of dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) complexes, Bu2Sn(LH)2, have been prepared and characterized by 1H, 13C, 119Sn NMR and ESI mass spectrometry in solution. The structures of the complexes Bu2Sn(L1H)2 (1), Bu2Sn(L3H)2 (3), Bu2Sn(L4H)2 (4), and Bu2Sn(L6H)2 (6) (L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate: aryl = phenyl (L1H), 3-methylphenyl (L3H), 4-methylphenyl (L4H) and 4-bromophenyl (L6H)) were determined by X-ray crystallography and 117Sn CP-MAS NMR spectroscopy in the solid state. In general, the complexes were found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom. In addition, there are weak bridging intermolecular Sn?O contacts in complexes 1 and 3, but not in 4 and 6, where one of the hydroxy oxygen atoms from a neighboring molecule coordinates weakly with the Sn atom, thereby completing a seventh coordination site in the extended Sn coordination sphere. The Sn?O distance is 3.080(2) and 3.439(2) Å in 1 and 3, respectively, which are significantly shorter than the sum of the van der Waals radii of the Sn and O atoms (∼3.8 Å). In 1, this Sn?O interaction links the molecules into polymeric chains. In 3, these interactions link pairs of molecules into head-to-head dimeric units. The in vitro cytotoxicity of compound 2 indicates better results than cisplatin and etoposide against seven well characterized human tumor cell lines.  相似文献   

6.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

7.
Magdy A. Ibrahim 《Tetrahedron》2009,65(36):7687-2859
4-Hydroxycoumarin-3-carboxaldehyde (5) was obtained from chromone-3-carboxaldehyde (1) via chromone-3-carboxamide (2) and 3-aminomethylene-2H-chroman-2,4-dione (3). 3-Alkylaminomethylenechroman-2,4-diones (7,8) were obtained from the reaction of primary aliphatic amines with chromone-3-carboxamide (2). Treatment of chromone-3-carboxamide with sodium methoxide gives 3-(2-hydroxybenzoyl)-2H-chromeno[2,3-b]pyridine-2,5(1H)-dione (9).  相似文献   

8.
Thermolysis of Ni(OTf)2 in 2-phenyl-pyridine or 2-tolyl-pyridine afforded the cationic chelate derivatives, [bis(2-aryl-pyridine)Ni{(2-aryl-κC2)pyridine-κN}]OTf (aryl = phenyl, 1a; tolyl, 1b). Addition of KBr to 1a and LiBr to 1b provided the bromides, (2-aryl-pyridine)BrNi{(2-aryl-κC2)pyridine-κN} (aryl = phenyl, 2a; tolyl, 2b). When subjected to KOtBu in Et2O, the bromides generated the entitled bis-cyclometalated compounds, Ni{(2-aryl-κC2)pyridine-κN}2 (aryl = phenyl, 3a; tolyl, 3b). These compounds insert diphenylacetylene into one cyclometalate arm to produce [(2-aryl-κC2)pyridine-κN]Ni[2-(2-(1,2-diphenylethenyl-κC2)aryl)pyridine-κN] (aryl = phenyl, 4a; p-tolyl, 4b). X-ray crystallographic studies were conducted on 1a, 2a, 3a and 4a, and a brief DFT study of 3a confirmed its low spin configuration and rippled geometry.  相似文献   

9.
Six novel organotin(IV) carboxylates have been successfully synthesized, namely, the polymer (C6H5)3Sn(L1) (1) [HL1 = 4-imidazolyl benzoic acid], the mononuclear (C6H5)3Sn(L2) (2) [HL2 = 4-pyrazolylbenzoic acid], (C6H5)3Sn(L3)·CH3OH (3) [HL3 = 4-triazolylbenzoic acid] and (C6H5)3Sn(L4) (4) [HL4 = 4-tetrazolyl benzoic acid] and the tetranuclear [(n-Bu2Sn)4(L2)2O2(OCH3)2] (5) and [(n-Bu2Sn)4(L3)2O2(OCH3)2] (6). X-ray diffraction analyses show 1D infinite chain of polymer 1, single molecular structures of isomorphous complexes 2 and 4, single molecule structures of complex 3 containing solvent CH3OH molecule and similar ladder-type structures of complexes 5 and 6. The photoluminescence of ligands and 1-6 were also measured in the solid state at room temperature.  相似文献   

10.
Ketones 11a-c obtained by iterative alkylation of acetone N,N-dimethylhydrazone with iodides 6 and 8a,b or epoxide 9 followed by SiO2/H2O-induced cleavage of the hydrazone were quantitatively transformed into 1,6-dioxaspiro[4.6]undecanes 12a,c and 1,7-dioxaspiro[5.6]dodecanes 12b using Yb(OTf)3 in CH3CN.  相似文献   

11.
The treatment of 5H-1,2,3-dithiazole-5-thiones 1 in chloroform under reflux and 5H-1,2,3-dithiazol-5-ones 2 in THF at room temperature with primary aliphatic amines and benzylamine afforded 1,2,5-thiadiazole-3(2H)-thiones 3 and 1,2,5-thiadiazol-3(2H)-ones 6, respectively. The structure of dithiazolone 3f was confirmed by X-ray diffraction analysis. The reaction of dithiazolone 2e bearing an electron-donating methyl group in the 4-position gave 2-oxoacetamide 7e in high yield. The reaction of thiones 1 with secondary aliphatic amines in DMSO yielded 2-iminothioacetamides 8 in moderate yields together with elemental sulfur. Interestingly, the treatment of dithiazolones 2 with secondary amines under the same conditions afforded 2-oxoacetamides 9—the products of the hydrolysis of corresponding imino derivatives 10, which was isolated as 10b. A general mechanism was proposed for the formation of the products.  相似文献   

12.
Eight new organotin (IV) carboxylates, (R3Sn)4(nap)4 (R = Me 1, n-Bu 2), [(R3Sn) (nap)]n (R = Ph 3, PhCH24), (R2Sn) (nap)2 (R = n-Bu 5, Ph 6, PhCH27) and {[R2Sn(nap)]2O}2 (R = Me 8) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of the complexes have been characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectra. Among these complexes, complexes 1, 3, 5 and 8 were also characterized by X-ray crystallography diffraction analysis, and the data of X-ray crystallography diffraction indicated that complexes 1, 3 and 5 are new chiral organotin (IV) carboxylates complexes. The structural analyses show that complex 1 has a tetranuclear Sn4O8 macrocycle structure, complex 3 has a 1D spring-like chiral helical chain with a columnar channel, complex 5 possesses a dimer structure, and complex 8 has a supramolecular chainlike ladder structure through weak intermolecular non-covalent OO interactions.  相似文献   

13.
Reactions of potassium 4-thioxo-3-thia-1,4a,9-triaza-fluorene-2-thiolate with Ph3PbCl, Ph3SnCl and Ph3GeCl provided the corresponding metal pentacoordinated compounds 2-4. Addition of THF afforded their hexacoordinated derivatives (5-7). Adducts of 2 and 3 with DMSO (8, 10), pyridine (9, 11), Ph3PO (12, 14) CH3OH (13, 15), respectively were synthesized. Compound 2 afforded the H2O adduct (16). In all cases the metal atom is chelated by the ligand through a covalent bond with S2 and a coordination bond with N1 forming four membered rings. Compounds were identified by 1H, 13C, 15N, 119Sn and 207Pb. X-ray diffraction structures of 2, 3, 8, 9, 11, 14 and 16 were obtained.  相似文献   

14.
Six organotin compounds with 4,4′-thiodibenzenethiol (LH2) of the type RnSnL4−nSnRn (n = 3: R = Me 1, Ph 2, PhCH23, n = 2: R = Me 4, Ph 5, PhCH26) have been synthesized. All compounds were characterized by elemental analysis, IR and NMR (1H, 13C, and 119Sn) spectra. The structures of compounds 1, 2, 4, 5 and 6 were also determined by X-ray diffraction analysis, which revealed that compounds 1 and 2 were monomeric structures, compounds 4, 5 and 6 were centrosymmetric dinuclear macrocyclic structures, and all the tin(IV) atoms are four-coordinated. Furthermore, supramolecular structures were also found in compounds 1, 2, 4, 5 and 6, which exhibit one-dimensional chains, two-dimensional networks or three-dimensional structures through intermolecular C–H?S weak hydrogen bonds (WHBs), non-bonded Sn?S interactions or C–H?π interactions.  相似文献   

15.
Le-Ping Liu 《Tetrahedron》2007,63(21):4535-4542
Mono-aryl group substituted methylenecyclopropanes (MCPs) 1 react with diethyl ketomalonate 2a, an activated ketone, to give the corresponding 7-hydroxy-5-oxa-spiro[2,4]heptan-6-one derivatives 6 with syn-configuration in moderate yields in the presence of water under the catalysis of Lewis acids such as Sc(OTf)3, Yb(OTf)3 or In(OTf)3 at room temperature. The reaction mechanism has been discussed on the basis of an 18O-labeling experiment.  相似文献   

16.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

17.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

18.
A series of cationic palladium complexes of general formula [Pd(CH3)(NCCH3)(N-N)][X] (N-N = phen 1, 3-sec-butyl-1,10-phenanthroline (3-sBu-phen) 2, bpy 3, (−)-(S,S)-3,3′-(1,2-dimethylethylenedioxy)-2,2′-bipyridine (bbpy) 4, (+)-(R)-3,3′-(1-methylethylenedioxy)-2,2′-bipyridine (pbpy) 5, N,N′-bis(2,6-diisopropylphenyl)-2,3-butanediimine (iso-DAB) 6; , OTf (OTf = triflate) b) containing different nitrogen-donor ligands were prepared from the corresponding neutral chloro derivatives [Pd(CH3)(Cl)(N-N)] (1c-6c). They were characterized by 1H NMR spectroscopy and elemental analysis. Single crystals suitable for X-ray determination were obtained for complexes [Pd(CH3)(NCCH3)(bbpy)][PF6] (4a), [Pd(CH3)(NCCH3)(iso-DAB)][PF6] (6a) and [Pd(Cl)2(bbpy)] (4c′). The latter is the result of an exchange reaction of the methyl group, present in complex 4c, with a chloride, that occurred after dissolution of 4c in CDCl3, for 1 week at 0 °C. The catalytic behavior of complexes 1a-5a and 1b-5b in the CO/styrene copolymerization was studied in CH2Cl2 and 2,2,2-trifluoroethanol (TFE) evidencing the positive effect of the fluorinated alcohol both in terms of productivity and molecular weight values of the polymers obtained. Influence of the nitrogen ligand, the anion and the reaction time in both solvents were investigated and is discussed in detail. Encouraging preliminary results were also obtained in the synthesis of polyethylene, in TFE, catalyzed by [Pd(CH3)(NCCH3)(iso-DAB)][PF6] (6a).  相似文献   

19.
Wenxue Guo  Dengze Wu  Fan Chen 《Tetrahedron》2009,65(27):5240-5243
Rongalite® promotes cleavage of disulfides generating thiolate anions that then undergo facile ring opening of epoxides in the presence of K2CO3 to afford α-addition products 3 with good to excellent yields. The important features of this methodology are broad substrates scope, high yielding, reasonably rapid reaction rate, high regioselectivity and no requirement of metal catalysts. It should be noted that the thiolate anion attacks the epoxides derived from styrene to produce the corresponding α-addition products 3 with high regioselectivity, instead of the β-addition regioisomer 4 that could be formed from the attack of the nucleophile at the benzylic position.  相似文献   

20.
DmpSbBr2 (Dmp = 2,6-Mes2C6H3) (1) is obtained by the reaction of DmpMgBr with SbCl3. The reaction of 1 with KI in ethanol gives DmpSbI2 (2). Dmp(Ph)SbBr (3) is prepared from DmpMgBr and PhSbCl2. Compound 1 or 3 react with LiAlH4 to form DmpSbH2 (4) or Dmp(Ph)SbH (5). Compound 4 reacts with MeI in presence of DBU to give Dmp(Me)SbH (6). DmpSb(SbMe2)2 (7) is obtained from 4 and Me4Sb2. Elimination of hydrogen from 6 gives [Dmp(Me)Sb]2 (8). Hydrolysis of 3 gives Dmp(Ph)SbOH (9). The molecular structures of 1-3, 5, 8 and 9 were determined by X-ray diffraction on single crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号