首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reductive reactivity of the (BPh4)1− ligand in pentamethylcyclopentadienyl [(C5Me5)2U][(μ-η21-Ph)2BPh2] (1) was compared with that of the tetramethyl analog, [(C5Me4H)2U][(μ-η61-Ph)(μ-η11-Ph)BPh2] (2) using PhSSPh as a probe to determine if the mode of (BPh4)1− bonding affected the reduction. Both complexes act as two-electron reductants to form (C5Me4R)2U(SPh)2 [R = Me, 3; H, 4], but only in the R = H case could the product be crystallographically characterized. An improved synthesis of 1 from [(C5Me5)2UH]2 (5) and [Et3NH][BPh4] is also reported as well as its reaction with MeCN that provides another route to the unusual, parallel-ring, uranium metallocene [(C5Me5)2U(NCMe)5][BPh4]2 (6).  相似文献   

2.
Treatment of hexabromoosmic acid, H2OsBr6, with 4 equiv. of tetramethylcyclopentadiene (C5Me4H2) in tert-butanol at reflux for 8 h affords the unusual salt [(C5Me4H)2OsBr]2[Os2Br8], 1, which is the bis(tetramethylcyclopentadienyl)bromoosmocinium(IV) salt of the octabromodiosmate(III) dianion. The brown color of the salt suggests that the anion adopts an eclipsed conformation (D4h symmetry) and this conclusion has been confirmed by a single-crystal X-ray diffraction experiment. The X-ray crystal structure indicates that the osmium atoms in the anion are disordered over two sites. The bromine atoms show no evidence of disorder and are disposed in a quasi-cubic arrangement; the two Os-Os vectors are almost exactly orthogonal to each other and each vector points toward a different pair of opposite square faces of the Br8 cube. The Os-Os bond distances are 2.219(5) and 2.229(1) Å; the average Os-Br distance in the anion is 2.417(2) Å. Treatment of [(C5Me4H)2OsBr]2[Os2Br8] with excess 1,5-cyclooctadiene in ethanol at gentle reflux for 3 h affords [(C5Me4H)2OsBr][Os2HBr4(cod)2], 2. An X-ray crystallographic study was carried out on a sample in which the cation was a mixture of [(C5Me4H)2OsBr+] and [(C5Me4H)2OsH+]. The results demonstrate that the anion adopts a confacial bioctahedral structure in which the hydride ligand and two bromides bridge between the two osmium centers. The CC bonds of the cod ligands are trans to the bridging bromide groups. The Os-Os bond distance in the anion is 2.874(1) Å. The average Os-Br distance is 2.596(2) Å for the bridging bromides and 2.565(2) Å for the terminal bromides. Compound 2 is the first example of an anionic diosmium complex containing a bridging hydride. The reaction of 1 with cod also results in the formation of bis(tetramethylcyclopentadienyl)osmocene, (C5Me4H)2Os, 3, which has been isolated and characterized. Treatment of (C5Me4H)2Os with 1.0 equiv. of HBF4 · Et2O affords the osmocinium salt [(C5Me4H)2OsH][BF4].  相似文献   

3.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

4.
The organo-tin compounds, Me2Sn(C5H4R-1)2 (R = Me (1), Pri (2), But (3), SiMe3 (4)) and Me2Sn(C5Me4R-1)2 (R = H (5), SiMe3 (6)), were prepared by the reaction of Me2SnCl2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds 1-6 have been characterized by multinuclear NMR spectroscopy (1H, 13C, 119Sn). In addition the molecular structures of 5 and 6 were determined by single crystal X-ray diffraction studies. The transmetalation reaction of 1-6 with ZrCl4 or [NbCl4(THF)2] gave the corresponding metallocene complexes in high yields.  相似文献   

5.
Reaction of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2) with excess 12-crown-4 affords the new separated ion pair complex, [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), in excellent yield. This complex reacts with 2,6-diisopropylaniline and phenylacetylene to give the methyl amide complex [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4) and the bis(acetylide) complex [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), respectively. Attempts to promote methane loss from complexes 3 and 4 to generate a lutetium methylidene or imido complex, respectively, were unsuccessful. The ability of the bis(acetylide) complex 5 to act as a π-tweezer complex was also explored. Reaction between [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5) and CuSPh gave only intractable lutetium products and the copper(I) species [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8). The new lutetium complexes have been characterized by elemental analysis and NMR spectroscopy. Finally, the X-ray crystal structures of (C5Me5)2Lu(Me)(μ-Me)Li(THF)3 (2), [Li(12-crown-4)2][(C5Me5)2LuMe2] (3), [Li(12-crown-4)2][(C5Me5)2Lu(Me)(NH-2,6-iPr2C6H3)] (4), [Li(12-crown-4)2][(C5Me5)2Lu(C≡C-Ph)2] (5), and [Li(12-crown-4)2][Cu(C≡C-Ph)2] (8) are also reported.  相似文献   

6.
The ability of [PtX2(Me2phen)] (Me2phen = 2,9-dimethyl-1,10-phenanthroline, X = Cl, Br, I) to act as olefin scavengers, easily giving stable trigonal bipyramidal five-coordinated platinum species [PtX2(Me2phen)(η2-olefin)], has been checked toward [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)], a cyclopentadienyl complex containing an olefinic function introduced by ring methyl activation in the pentamethylcyclopentadienyl iridium(III) complex [(C5Me5)Ir(Me)(CO)(Ph)]. The reaction of [PtI2(Me2phen)] with [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)] results in the formation of the heterometallic binuclear complex [PtI2(Me2phen){(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)}] which is stable and has been completely characterized by elemental analysis, 1H, 13C, and 195Pt NMR spectroscopy.  相似文献   

7.
C5Me5Rh(L)P2Me4 (L = CO, C2H4) reacts with [C5Me5Rh(μ-CO)]2, to give the trinuclear complexes C5Me5(L)Rh(μ-P2Me4)RhC5Me5(μ-CO)2RhC5Me5 (VI, VII). In the reactions of C5Me5Rh(CO)P2Me4 with C5H5(CO)2 (M = Rh, Co) and C5H4RMn(CO)3 (R = H, Me), the homo- and hetero-metallic binuclear compounds C5Me5(CO)Rh(μ-P2Me4)M(CO)C5H5 (VIII, IX) and C5Me5(CO)Rh(μ-P2Me4)Mn(CO)2C5H4R (X, XI) are obtained in almost quantitative yield. The X-ray structure of the complex C5Me5[P(OMe)3]Rh(μ-CO)2RhC5Me5 (III), which is structurally related to VI and VII, has been determined. The molecule contains an unsymmetrical, non-planar Rh2C2-skeleton with different Rh-C(O) bond lengths. The Rh-Rh distance is 268.5(1) pm; the planes of the two five-membered rings form an angle of 62.6°.  相似文献   

8.
[C5Me5Rh(μ-co)]2 reacts with phosphines (PMe2H, PMe3) and trimethylphosphite to give the binuclear complexes C5Me5(L)Rh(μ-CO)2RhC5Me5 which have been characterised by elemental analyses, mass spectra,1H and 31P NMR data. They are surprisingly inert toward an excess of L and do not react to give the mononuclear compounds C5Me5Rh(CO)L. These are obtained in good yields from C5Me5Rh(CO)2 and L where L is PMe2H, P(OMe)3, PEt3, P(OEt)3 and PMe2Ph.  相似文献   

9.
The inclusion complexes of sulfonated thiacalix[4]arene 1 and calix[6]arene 2 sodium salts with C60 fullerene were investigated by photoluminescence (PL) and quantum-chemical methods. The stoichiometries of calixarene/C60 complexes were found to be 2:1 for 1 and 1:1 for 2. Related quantum-chemical investigations show that C60 fullerene is included in a cavity composed of two half-bowl molecules of 1. The C60 fullerene ball is located deep within the cavity of 2 and the negatively charged sulfonate arms probably inhibit the formation of the bowl-shaped capsule that was observed in the case of 1.  相似文献   

10.
The complexes C5H5CuPR3 (R = Me, Pri), C5H5AuPR3 (R = Me, Pri), C5Me5CuPR3 (R = Me, Pri, Ph) and C5Me5AuPR3 (R = Pri, Ph) are prepared from [ClCuPR3]n or ClAuPR3 and LiC5H5 (TlC5H5) or LiC5Me5, respectively. According to the 1H and 13C NMR spectra, the cyclopentadienyl and pentamethylcyclopentadienylgold compounds are fluxional in solution. The X-ray crystal structure of C5H5AuPPr3i has been determined at ?120°C. The gold atom is in a linear arrangement (PAuC(1) = 177.0(2)°) and primarily σ-bonded to the cyclopentadienyl ring which shows a weak “slip distortion” toward a η3-mode of coordination. The complexes C5R′5AuPR3 (R′ = H, Me) and C5Me5CuPPr3i react with 1-alkynes such as C2H2, HC2Ph and HC2CO2Me to form alkinylgold and copper compounds R″C2MPR3. They have been characterized by IR, UV and NMR (1H, 13C, 31P) spectroscopy.  相似文献   

11.
Half-sandwich [η51N-C5Me4CH2-(2-C5H4N)]MCl3 (M = Ti (4), Zr (5)) and sandwich [η5-C5Me4CH2-(2-C5H4N)][η5-C5Me5]ZrCl2 (6) ring-peralkylated complexes have been prepared and characterized. Evidence of the intramolecular coordination of the side-chain pyridyl group both in 4 and 5 in solutions is provided by NMR spectroscopy data. Crystal structure of an adduct 5-py with one molecule of pyridine has been established by X-ray diffraction analysis.  相似文献   

12.
The first fluoroxyfluorofullerene C60F17OF (A) has been isolated from the fluorination of [60]fullerene with a mixture of MnF3 and K2NiF6 at 480 °C. This compound has a shorter HPLC retention time than the isomeric fluorofullerene ethers (oxahomofullerenes) and is less stable towards EI mass spectrometry. It fragments by losing OF as a single entity and shows no formation of C60O as a fragment ion. By contrast, the ethers fragment by first losing a number of F atoms and then CO, and ultimately show also the presence of C60O, whilst epoxides lose CO as a main fragmentation step and do not give C60O. The first oxahomofluorofullerenol C60F17O.OH (B) has been isolated from the UV-irradiation of a toluene solution of C60F18 in air during 65 h and readily eliminates HF due to adjacent F and OH groups during EI mass spectrometry. The structures of both the compounds have been deduced from 1D and 2D NMR spectroscopy. Just as oxygen inserts into FCCF bonds of C60F18 to give ethers, so insertion into a CF bond gives A. The oxahomofluorofullerenol B is produced by SN2′ substitution of F by OH, followed by oxygen insertion into a 6:5-bond (αβ to the OH group) giving a motif not seen previously in fluorofullerenes.  相似文献   

13.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

14.
The crystal and molecular structure of the monoligand trimetallic complex [{Rh(C5Me5)}3Cl5np3]PF6 · 0.5 C3H8O (np3  tris(2-diphenylphosphinoethyl)-amine) have been established by a single-crystal X-ray diffraction study. The cation of the complex contains two Rh(C5Me5)Cl2 units each bound through the metal to one phosphorus atom of the ligand and a Rh(C5Me5)Cl group in which the rhodium is bound to the third phosphorus atom and to the nitrogen of the tetradentate ligand.The crystals are triclinic, space group P1, with cell dimensions a 28.598(8), b 13.757(4), c 10.748(3) Å, α 90.69(4), β 96.67(4), γ 99.71(4)°, Dc 1.38 g cm?3 for Z  2. The structure was solved by three dimensional Patterson and Fourier syntheses and refined by least-squares techniques to a final conventional R value of 0.098.  相似文献   

15.
Reactions of Me5Al3[OC(C6H5)2C(C6H5)2O]2 (1) with alcohols ROH (R = Me, Et, tBu) in a 1:1 molar ratio afforded the compound Me2Al2[OC(C6H5)2C(C6H5)2O]2(C4H8O) (2) and a mixture of methylaluminum alkoxides. The alcohols acted as the factor formally eliminating a molecule of Me3Al (as a methylaluminum alkoxide) from compound 1. tBu3Al reacted with an equimolar amount of benzopinacol to form the monomeric complex tBuAl[OC(C6H5)2C(C6H5)2O](C4H8O) (3). Reactions of Me3Ga and Me3In with benzopinacol yielded trinuclear complexes Me5M3[OC(C6H5)2C(C6H5)2O]2 (4 (M = Ga), 5 (M = In)), isostructural to compound 1. In the presence of water and alcohols, compounds 4 and 5 underwent a decomposition reaction to benzopinacol and a mixture of metalloxanes and alkoxides. An unusual methylmethoxo indium benzopinacolate Me6In4[OC(C6H5)2C(C6H5)2O]2(OCH3)2 (6) was obtained in the reaction of benzopinacol with Me3In and Me2InOMe in a 1:1:1 molar ratio. Molecular structures of the compounds 3, 4 and 6 were determined by X-ray crystallography.  相似文献   

16.
Experimental results of an investigation of the ESR spectrum of the pentafluorocyclopentadienyl radical C5F5 in various liquid and solid matrices are reported. At temperatures above 120 K the ESR spectra indicate a five-fold symmetry with a fluorine isotropic splitting of 16 G and an isotropic g tensor of 2.0041. From liquid solutions a value Aiso13C ≈ 2.1 G for the isotropic coupling of the 13C1 species in natural abundance was found. The ESR spectra exhibit a pronounced temperature dependence, which is interpreted by lineshape analysis to originate from an anisotropic hyperfine interaction tensor of fluoroine, partially averaged by a uniaxial rotational reorientation. From ESR spectra of polycrystalline samples the principal value A6 = 57.5–58.3 G depending on the matrix was derived.  相似文献   

17.
The reduction of fullerene C60 by Zn and Mg in DMF was studied both in the presence and absence of KOH. Fullerene C60 was reduced in these systems to form the C60 n (n = 1, 2, and 3) anions. The anions were detected by optical and ESR spectroscopies. It was found that Mg reduced C60 to the monoanion, Mg/KOH and Zn reduced C60 to the dianion, and Zn/KOH reduced C60 to the trianion. Like KCN, potassium hydroxide adds to fullerene upon interaction with C60 in DMF. The reaction of C60 with KOH in benzonitrile was accompanied by the generation of the fullerene monoanion. A possible mechanism of the formation of fullerene monoanions in the presence of KOH is discussed. The degradation of the C60 n anions in air was studied.  相似文献   

18.
[Rh(η5-C5H5)(C3S5)] and [Rh(η5-C5Me5)(C3S5)]2 [C3S52−=4,5-disulfanyl-1,3-dithiole-2-thionate(2-)] were prepared by reactions of [NMe4]2[C3S5] with [Rh(η5-C5H5)Cl2]2 and [Rh(η5-C5Me5)Cl2]2, respectively. Their X-ray crystal structural analyses revealed a monomeric form for the former complex and a dimeric geometry containing bridging S-Rh-S bonds for the latter in the solid state. They were reacted with bromine to afford [RhBr(L)(C3S5)] (L=η5-C5H5 and η5-C5Me5) with the Rh-Br bond and one electron-oxidation on the C3S5 ligand. ESR spectra and spin densities for these oxidized species are discussed.  相似文献   

19.
Density functional theory is used to calculate the bond dissociation energy to cleave the C60C60 bond of the paramagnetic X-C60C60-X and X-C60C60 dimers where X is F, OH, O and H. The results show that these dimers would not be stable much above room temperature and therefore cannot constitute the paramagnetic phase needed to form the observed ferromagnetism which has been shown to be stable up to 800 K. The calculated bond dissociation energies to remove an F, OH or H from a single C60 are large suggesting that they could be the source of the unpaired spin needed for the high temperature ferromagnetism.  相似文献   

20.
This investigation was undertaken to determine the antioxidant activity of a range of fullerenes C60 and C70 in order to rank them according to their comparative efficiency. The model reaction of initiated (2,2′- azobisisobutyronitrile, AIBN) cumene oxidation was used to determine rate constants for addition of radicals to fullerenes. Measurements of oxidation rates in the presence of different fullerenes showed that the antioxidant activity as well as the mechanism and mode of inhibition were different for fullerenes C60 and C70 and fullerene soot. All fullerenes - C60 of gold grade, C60/C70 (93/7, mix 1), C60/C70 (80 ± 5/20 ± 5, mix 2) and C70 operated as alkyl radical acceptora, whereas fullerene soot surprisingly retarded the model reaction by a dual mode similar to that for the fullerenes and with an induction period like many of the sterically hindered phenolic and amine antioxidants. For the C60 and C70 the oxidation rates were found to depend linearly on the reciprocal square root of the concentration over a sufficiently wide range thereby fitting the mechanism for the addition of cumylalkyl radicals to the fullerene core. This is consistent with literature data on the more ready and rapid addition of alkyl and alkoxy radicals to the fullerenes compared with peroxy radicals. Rate constants for the addition of cumyl radicals to the fullerenes were determined to be k(333K) = (1.9 ± 0.2) × 108 (C60); (2.3 ± 0.2) × 108 (C60/C70, mix 1); (2.7 ± 0.2) × 108 (C60/C70, mix 2); (3.0 ± 0.3) × 108 (C70), M−1 s−1. The increasing C70 constituent in the fullerenes leads to a corresponding increase in the rate constant.The fullerene soot inhibits the model reaction according to the mechanism of trapping of peroxy radicals; the oxidation proceeds with a pronounced induction period and kinetic curves are linear in semi-logarithmic coordinates.For the first time the effective concentration of inhibiting centres and inhibition rate constants for the fullerene soot have been determined to be fn[C60−soot] = (2.0 ± 0.1) × 10−4 mol g−1 and kinh = (6.5 ± 1.5) × 103 M−1 s−1 respectively.The kinetic data obtained specify the level of antioxidant activity for the commercial fullerenes and scope for their rational use in different composites. The results may be helpful for designing an optimal profile of composites containing fullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号