首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

2.
Extended X-ray absorption fine structure (EXAFS) measurements have been recorded at the K-edge of copper in binuclear monohydroxo-bridged copper(II) complexes [(bpy)2Cu–OH–Cu(bpy)2](ClO4)3 (1) and [(phen)2Cu–OH–Cu(phen)2](C1O4)3 (2) and dihydroxo-bridged copper(II) complexes [Cu2(μ–OH)2(bipy)2]SO4?·?5H2O (3) and [Cu2(μ–OH)2(phen)2]SO4?·?5H2O (4) (where bpy and phen are 2,2′-bipyridine and 1,10-phenanthroline, respectively) using the dispersive EXAFS beamline at 2?GeV Indus-2 synchrotron source at RRCAT, Indore, India. The EXAFS data have been analyzed using the software, Athena and Artemis. Theoretical models have been generated for 1 and 3 using available crystallographic data and then fitted to their experimental EXAFS data to obtain the structural parameters, which include bond-lengths, coordination numbers, and thermal disorders. The results obtained have been found to be comparable with their crystallographic results. As the crystallographic data for 2 and 4 are not available in the literature, we have determined their structural parameters by fitting their experimental EXAFS data with the same theoretical models which were generated for their corresponding analogous complexes 1 and 3, respectively. The structural parameters thus determined have been reported. Also, on the basis of the analysis of the EXAFS data, these four complexes have been shown to be binuclear, i.e. they contain two metals. Further, the values of the chemical shifts suggest that copper is in +2 oxidation state in these complexes.  相似文献   

3.
The molecular structures of binuclear copper(II) complexes [Cu2REP(μ-OH)(ClO4)2] (4) and [Cu2REP(μ-Cl)Cl2] (5), in which REP = deprotonated 2,6-bis(1′-(4′-(2″-pyridyl)-2′-thiabutyl))-4-methylphenol, have been characterized by single-crystal X-ray diffraction. The former crystallizes in the triclinic space group Pl? with a = 10.156(3), b = 12.631(3), c = 25.128(10) Å, α = 92.03(3), β = 96.84(3), γ = 108.02(2),° and Z ? 2. Complex 5 crystallizes in the monoclinic space group C2/c with a = 12.166(2), b = 11.825(2), c = 18.240(4) Å, β = 100.97(2)°, and Z =4. All copper ions are pentacoordinated with ligation to a sulfur, a nitrogen, and the bridging phenolato oxygen of the REP ligand, the exogenous bridge, and a counteranion. The coordination geometry of each copper of the binuclear copper sites is square pyramidal in both 4 and 5. Magnetic susceptibility measurements in the temperature range 6–300 K reveal a strong antiferromagnetic spin exchange in 5 (exchange integral 2J = ?460 cm?1). A diamagnetic behavior is observed for 4 according to a similar cryomagnetic investigation. The diamagnetism of 4 is further confirmed by measurements of magnetic susceptibility through Evan's method at room temperature. Complex 4 has no EPR signal. The powder EPR spectrum of 5 shows the typical triplet state characteristics with Δm = ±1 transitions at g = 2.15 and a weaker Δm = 2 transition at half field with g = 4.24.  相似文献   

4.
A new binucleating macrocyclic ligand 2,6‐bis (1,4,7,10‐tetraazacyclododecan‐10‐ylmethyl) methoxy‐benzene (L) and its binuclear copper (II) complex, [Cu2LBr2] (CIO4 )2 · 3H2O (1), was prepared and the structure was determined by X‐ray crystallography. Complex 1 crystallizes in monoclinic crystal system, P21/n space group with a = 0.8206(3), b =2.0892(8), c = 2.3053(7) mn, β = 95.83(2)°, V = 3.932 nm3, Mr=1017.57, Z = 4, Dc =1.692 g/cm3, and R= 0.0489, Rw 0.0552 for 6571 observed reflections with I ≥ 2σ (1). Both of the copper(II) centers are coordinated by four amine nitrogen donors of cyclen subunits and a bromide anion, and each copper(II) ion is in a square‐pyramidal coordination environment. Variable temperature magnetic susceptibility studies indicate that there exists weak intramolecular antiferro‐magnetic coupling ( ?2J = 2.06 cm?1) between the two copper (II) centers.  相似文献   

5.
A catalytic asymmetric anti-selective nitroaldol reaction with a neodymium-sodium heterobimetallic catalyst is described. A readily accessible amide ligand works efficiently as a chiral platform for the Nd/Na heterobimetallic catalyst in the reaction of various aldehydes and nitroethane, affording anti-1,2-nitro alkanols in good diastereo- and enantioselectivity.  相似文献   

6.
By means of ultraviolet and visible spectroscopy we have studied the catecholase activity of two binuclear copper(II) complexes of general formula [Cu2REP(u-X)(Y)2] (1, X=OH and Y=ClO4; 2, X=Y=CI), REP =deprotonated 2, 6-bis(1′-(4′-(2″-pyridyl)-2′-thiabutyl))-4-methylphenol. Both complexes promote catalytic autoxidation of 3, 5-di-tert-butylcatechol (3, 5-DTBC) to 3, 5-di-tert-butylquinone (3, 5-DTBQ) in methanol, but not in acetonitrile.  相似文献   

7.
A novel family of oxazolinyl copper(II) catalysts have been developed and used as Lewis acid catalysts in the asymmetric Henry reaction of various aldehydes with nitromethane. The corresponding nitroalcohol products were obtained in moderate yields (40–80%) and with moderate enantioselectivity (10–40% ee).  相似文献   

8.
New macrocyclic complexes were synthesized by template reaction of 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane, 1,4-bis(2-carboxyaldehydephenoxy)butane or 1,3-bis(2-carboxyaldehydephenoxy)propane with 1,4-bis(2-aminophenoxy)butane, 1,3-bis(2-aminophenoxy)butane, 1,4-bis(4-chloro-2-aminophenoxy)butane or 1,3-bis(4-chloro-2-aminophenoxy)butane and Cu(NO3)2 ·?3H2O or Cu(ClO4)2 ·?6H2O, respectively. The complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and binuclear.  相似文献   

9.
10.
Various systems containing immobilized binuclear copper(II) and nickel(II) complexes with Robson type ligand ([M2L]Cl2) are studied and compared in relation to catalysis of hydrogen peroxide reduction. Molecular complexes adsorbed on mercury and gold, crystalline complexes immobilized in the carbon paste electrode, and complex species entrapped into polyphenol-modified gold electrodes are considered. Electrocatalysis is assumed to result from the formation of H2O2–[M2L]Cl2 adduct, not from mediating redox transformations. Possible geometry of the formed reaction layers supporting adduct formation is discussed.
Nataliya V. RoznyatovskayaEmail:
  相似文献   

11.
Four transition-metal carboxylate-like complexes have been synthesized from the reaction of the tertiary phosphine betaine triphenylphosphoniopropionate, Ph3P+(CH2)2CO 2 , with Co(ClO4)2· 6H2O, Cu(ClO4)2·6H2O, Cu(BF4)2·xH2O, and AgClO4, respectively, and fully characterized by single-crystal X-ray analysis. [CoPh3P(CH2)2CO2 4(H2O)2](ClO4)2·2H2O, 1, space groupP¯ l witha=9.195(2),b=13.000(2),c=18.795(3) Å,=102.52(1),=90.12(1),=109.28(2)° andZ=1; [CuPh3P(CH2)2CO2 4][Cu2 -Ph3P(CH2)2CO2 -O,O 4(H2O)2] (ClO4)6· 4H2O, 2, space groupP2l/c witha=14.225(3),b=24.624(6),c=24.297(5) Å,=94.18(1)°, andZ=2; [CuPh3,P(CH2)2CO2Me2N(CH2)2NMe2(H2O)2](BF4)2,3, space groupP2l/c witha=17.668(2),b=13.454(3),c=15.876(2) Å,=116.45(1)°, andZ=4; [Ag2Ph3P(CH2)2CO2 2(ClO4)]2(ClO4)2,4, space groupP¯ l witha=10.925(2),b=13.110(3),c=18.795(3) Å,=82.93(3),=87.45(3),=67.49(3)°, andZ=2. In complex1, the cobalt(II) atom is located in an inversion center and coordinated by four unidentate betaine ligands and a pair oftrans aqua ligands, and strong hydrogen bonds are formed between the aqua ligands and the pendant oxygen atoms of the betaine ligands. In complex2, mononuclear and dinuclear cations coexist in the asymmetric unit. In the mixed-ligand complex3 the betaine ligand acts in the unidentate coordination mode andN,N,N,N-tetramethylethylenediamine (tmen) in the chelate mode. Complex4 contains a discrete centrosymmetric tetranuclear cations in which one pair of betaine ligands act in the bidentate bridging mode and the other in both bidentate and one-atom bridging modes.  相似文献   

12.
We report the mechanism of asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear Zn complex using density functional theory. The experimentally proposed catalytic cycle is validated, in which the first step is the deprotonation of nitromethane by the ethyl anion of the catalyst, subsequently a C? C bond formation step, and then the protonation of the resulting alkoxide. Three mechanistic scenarios (differing in binding modes) have been considered for the C? C bond formation step. The origin of the enantioselectivity is discussed. Our calculations supported that the S configurations are the major products, which is in agreement with the experimental observations. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
Highly selective poly(vinyl chloride) (PVC) membrane electrode based on N-salicylidene-benzylamineato copper(II) complexes [Cu(SBA)2] as new carriers towards thiocyanate-selective electrode was reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The resulting electrode exhibits anti-Hofmeister selectivity sequence: SCN > ClO4 > Sal > I > Br > NO3 > NO2 > SO32− > H2PO4 > Cl > SO42−, and a near-Nernstian potential linear range for thiocyanate from 1.0 × 10−1 to 9.0 × 10−7 M with a detection limit of 7.0 10−7 M and a slope of , over a wide pH range of 3.0–9.0 in phosphate buffer solution at 20°C. The proposed electrode has a fast response time of about 5–10 s and can be used for at least 3 months without any considerable divergence in potential. The electrode was successfully applied to the determination of thiocyanate in waste water and human urine and saliva samples. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 293–299. The text was submitted by the authors in English.  相似文献   

14.
The complexes formed from copper(II) and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP or HL) in aqueous methanol solution was studied by electrospray ionization mass spectrometry. The solution of a 1:1 complex of Cu(II) with 5-Br-PADAP showed five peaks assignable to a binuclear complex [Cu2L2(AcO)]+ and mononuclear complexes [CuL]+, [CuL(H2O)]+, [CuL(AcOH)]+ and [CuL(HL)]+ (AcO=acetate). Collision activated dissociation revealed the relative order of bonding strengths; Cu–L>Cu–HL>CuL–AcOH>CuL–H2O. The peak intensities of the binuclear complex showed second-order dependency on those of the mono complex. As for the solution of Ni(II)–5-Br-PADAP, no binuclear complex was observed in the mass spectra. Thus, it was suggested that [Cu2L2(AcO)]+ was formed by the fast gas phase reaction: 2[CuL]++AcO[Cu2L2(AcO)]+.  相似文献   

15.
Newly synthesized mononuclear copper(II) and zinc(II) complexes containing an azo Schiff base ligand (L), prepared by condensation of 2-hydroxy-5-(o-tolyldiazenyl)benzaldehyde and propylamine, were obtained and then characterized using infrared and NMR spectroscopies, mass spectrometry and X-ray diffraction. Ligand L behaves as a bidentate chelate by coordinating through deprotonated phenolic oxygen and azomethine nitrogen. The copper and zinc complexes crystallize in triclinic and orthorhombic systems, respectively, with space groups P1 and Pca21. In these complexes, the Cu(II) ion is in a square planar geometry while the Zn(II) ion is in a distorted tetrahedral environment. The photochemical behaviors of ligand L, [Cu(L)2] and [Zn(L)2] were investigated. The azo group in L underwent reversible transcis isomerization under UV and visible irradiation. This process was inhibited for the complexes. In addition, ligand L and its copper and zinc complexes were assessed for their in vitro antibacterial activities against four pathogenic strains.  相似文献   

16.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

17.
Three binuclear Cu(II) complexes of two pyrimidine derived Schiff base ligands, 2-S-methyl-6-methyl-4-formyl pyrimidine-N(4)-ethyl thiosemicarbazone (HL1) and salicyl hydrazone of 2-hydrazino-4,6-dimethylpyrimidine (HL2), have been prepared. HL1 produces a bis(μ-thiolato) Cu(II) complex co-crystallizing with its mononuclear analog, [Cu2(L1)2(NO3)2][Cu(L1)(NO3)] (1). On the other hand HL2 shows versatility by producing two different classes of binuclear Cu(II) complexes, a bis(μ-phenoxo) complex [Cu2(L2)2(NO3)2] (2) and another a (μ-4,4′-bipyridyl) complex, [Cu2(L2)2(μ-4,4′-bipyridyl)(NO3)2] (3) under suitable conditions. All the three complexes show distorted square pyramidal geometry around each Cu atom but to a varied extent. Magnetic behavior of complex 1 shows that it is strongly ferromagnetic in nature whereas compounds 2 and 3 are weakly antiferromagnetic in nature. A magnetostructural correlation study combined with molecular modelling on complexes 1 and 2 has thrown light on the difference on magnetic interaction between the Cu atoms in these two complexes. Various factors that may be responsible for such differences are also explored. A novel and potentially useful pH dependant conversion of 3 to 2 has also been noticed.  相似文献   

18.
EMR studies of bis(benzene-dithiocarboxylato)copper(II) in the form of the pure solid sample, in solution as well as magnetically diluted in the host lattices of the corresponding complexes of NiII, ZnII, PdII, and PtII are reported. Two different samples (violet and blue) have been obtained in the NiII complex host lattice with EMR spectra indicating a superposition of several individual CuII signals. The EMR spectrum of the violet sample is explained by a superposition of the individual signals of (thio-, perthio-carboxylate)CuII and bis(perthiocarboxylate)CuII while that for the blue Cu/Ni(dtb)2 complex, as well as for Cu/Pd (dtb)2 is explained by different positions of the CuII species in the host lattices. The EMR spectrum typical for the magnetically diluted sample caused by self redox reaction has been recorded in the pure solid sample of copper(II) dithiocarboxylate complex.  相似文献   

19.
A water soluble chloro bridged binuclear copper(II) complex (3) and mononuclear complex (4) have been synthesized from chloro substituted 2‐oxo‐1,2‐dihydroquinolin‐3‐yl‐methylene‐2 hydroxybenzohydrazide 1 and 2 and CuCl2·2H2O. The structures of the complexes have been determined by single crystal X‐ray diffraction. The binding interactions of the ligands and complexes with CT‐DNA and protein have been evaluated by absorption and emission spectroscopic method. CT‐DNA and ethidium bromide (EB) competitive studies revealed that the compounds could interact with CT‐DNA through intercalation binding mode. Interactions of the compounds with BSA were also studied by UV−visible, fluorescence and synchronous fluorescence spectroscopic methods which showed that the compounds had a strong binding affinity with BSA through static quenching process. The cytotoxic effect of the compounds examined on cancer cell lines, such as A549 (lung cancer) and MCF7 (breast cancer) cell lines showed that all four compounds exhibited substantial cytotoxic activity.  相似文献   

20.
1 INTRODUCTIONThepreparationandstudyofpolynuclear,cyanidebridgedmetalcomplexeshaveattractedconsiderableinterestoverthepastdecade〔1~ 10〕.Intermetallicelectroniccou plingprovidedbythecyanidebridgeshasledtonovelmixed valenceproperties,andphotoinducedelectron…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号