首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient aerobic oxidation of alcohols was developed via a biomimetic catalytic system. The principle for this aerobic oxidation is reminiscent of biological oxidation of alcohols via the respiratory chain and involves selective electron/proton transfer. A substrate-selective catalyst (ruthenium complex 1) dehydrogenates the alcohol, and the hydrogens abstracted are transferred to an electron-rich quinone (4b). The hydroquinone thus formed is continuously reoxidized by air with the aid of an oxygen-activating Co[bond]salen type complex (6). Most alcohols are oxidized to ketones in high yield and selectivity within 1-2 h, and the catalytic system tolerates a wide range of O(2) concentrations without being deactivated. Compared to other ruthenium-catalyzed aerobic oxidations this new catalytic system has high turnover frequency (TOF).  相似文献   

2.
钱文浩  黄玮  丛玉凤 《化学通报》2019,82(6):555-558
CuBTC(BTC:1,3,5-均苯三酸)作为一种高效、可重复利用的非均相催化剂,在催化领域有着重要的应用。论文主要研究了在Cu-TEMOP体系下,CuBTC对苯甲醇的需氧氧化反应的催化效果。研究表明,在CuBTC的催化下,多种苯甲醇衍生物被有效的氧化成相应的醛,并且该催化体系有着较高的选择性,能高效氧化伯醇。与传统的均相铜盐催化剂相比,Cu(II)能稳定的固定在CuBTC的刚性结构骨架中,并且催化活性不会降低。但是,羧酸类物质会使CuBTC催化剂中毒,所以CuBTC不适用于原料、产物或者副产物中存在羧酸的反应体系。  相似文献   

3.
5-Fluoro-2-azaadamantane N-oxyl (5-F-AZADO) realizes a simple, organocatalytic aerobic alcohol oxidation system that has a wide scope under mild conditions at ambient pressure and temperature and is weakly acidic and halogen- and transition-metal-free. The oxoammonium nitrate (5-F-AZADO(+)NO(3)(-)) works as a bifunctional catalyst of 5-F-AZADO and NO(x) that enables the catalytic aerobic oxidation of alcohols by itself (a metal-salt-free system).  相似文献   

4.
以不同温度焙烧TiO(OH)_2得到的TiO_2为载体,采用湿法浸渍法制备RuO_2/TiO_2-C(C=450、550、650及750℃)催化剂,利用XRD、N_2吸附-脱附、TEM和H_2-TPR等表征手段研究催化剂的物理化学性质,并对其在HCl氧化反应中的催化性能进行考察.结果表明:载体焙烧温度对催化剂的结构与活性有显著影响.随着载体焙烧温度(≤650℃)的升高,RuO_2与TiO_2之间的晶面匹配度逐渐变高,促进了RuO_2在TiO_2表面的分散,其中RuO_2/TiO_2-650催化剂表现出最优的催化性能.而当载体焙烧温度过高时,RuO_2/TiO_2-750催化剂的反应活性大大下降,可能是由于过高的焙烧温度导致载体出现严重的烧结团聚现象,以及RuO_2与TiO_2之间过强的相互作用,阻碍了HCl氧化反应的进行.此外,减小RuO_2的粒径可以促进HCl氧化活性的提升.动力学结果显示,催化剂表面的HCl氧化反应主要受O_2分压的影响,表明O_2从催化剂表面的解离吸附为决速步骤.  相似文献   

5.
Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research. As a kind of biomimetic catalyst, metalloporphyrins‐catalyzed aerobic oxidation of alcohols with aldehyde as hydrogen donator is gathering much attention. However, using olefins as another kind hydrogen donator for aerobic oxidation of alcohols has not been reported. In this study, a system comprising managenese porphyrin and cyclohexene for biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed. The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions. Based on the results obtained from experiments as well as in situ EPR (electron paramagnetic resonance) and UV‐vis spectroscopy, the role of cyclohexene was demonstrated.  相似文献   

6.
We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.  相似文献   

7.
Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water‐ and organo‐dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4‐nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4‐nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo‐dispersible gold nanoparticles.  相似文献   

8.
Hanson SK  Wu R  Silks LA 《Organic letters》2011,13(8):1908-1911
Transition metal-catalyzed aerobic alcohol oxidation is an attractive method for the synthesis of carbonyl compounds, but most catalytic systems feature precious metals and require pure oxygen. The vanadium complex (HQ)(2)V(V)(O)(O(i)Pr) (2 mol %, HQ = 8-quinolinate) and NEt(3) (10 mol %) catalyze the oxidation of benzylic, allylic, and propargylic alcohols with air. The catalyst can be easily prepared under air using commercially available reagents and is effective for a wide range of primary and secondary alcohols.  相似文献   

9.
In homogeneous catalyst systems, there is the persistent problem that metal aggregation and precipitation cause catalyst decomposition and considerable loss of catalytic activity. Pd black formation is a typical example. Pd catalysts are known to easily aggregate and form Pd black, although they realize a wide variety of useful reactions in organic synthesis. In order to overcome this intrinsic problem of homogeneous Pd catalysis, we explored a new class of Pd catalyst by adopting aerobic oxidation of alcohols as a probe reaction. Herein we report a new catalyst system that suppresses the Pd black formation even under air and with a high substrate to catalyst molar ratio (S/C: more than 1000) in oxidation of alcohols. The novel pyridine derivatives having a 2,3,4,5-tetraphenylphenyl substituent and its higher dendritic unit at the 3-position of the pyridine ring were found to be excellent ligands with Pd(OAc)2 in the palladium-catalyzed air (balloon) oxidation of alcohols in toluene at 80 degrees C. Comparison with structurally related pyridine ligands revealed that introduction of the 2,3,4,5-tetraphenylphenyl substituent at the 3-position of pyridine ring effectively suppresses the Pd black formation, maintaining the catalytic activity for a long time to give aldehydes or ketones as products in high yields.  相似文献   

10.
We have developed a polymer-incarcerated bimetallic Au-Pd nanocluster and boron as a catalyst for the sequential oxidation-addition reaction of 1,3-dicarbonyl compounds with allylic alcohols. The desired tandem reaction products were obtained in good to excellent yields under mild conditions with broad substrate scope. In the course of our studies, we discovered that the excess reducing agent, sodium borohydride, reacts with the polymer backbone to generate an immobilized tetravalent boron catalyst for the Michael reaction. In addition, we found bimetallic Au-Pd nanoclusters to be particularly effective for the aerobic oxidation of allylic alcohols under base- and water-free conditions. The ability to conduct the reaction under relatively neutral and anhydrous conditions proved to be key in maintaining good catalyst activity during recovery and reuse of the catalyst. Structural characterization (STEM, EDS, SEM, and N(2) absorption/desorption isotherm) of the newly prepared PI/CB-Au/Pd/B was performed and compared to PI/CB-Au/Pd. We found that while boron was important for the Michael addition reaction, it was found to alter the structural profile of the polymer-carbon black composite material to negatively affect the allylic oxidation reaction.  相似文献   

11.
A core-shell composite consisting of a palladium (Pd) nanoparticle and a hollow carbon shell (Pd@hmC) was employed as a catalyst for aerobic oxidation of various alcohols. The core-shell structure was synthesized by consecutive coatings of Pd nanoparticles with siliceous and carbon layers followed by removal of the intermediate siliceous layer. Structural characterizations using TEM and N(2) adsorption-desorption measurements revealed that Pd@hmC thus-obtained was composed of a Pd nanoparticle core of 3-6 nm in diameter and a hollow carbon shell with well-developed mesopore (ca. 2.5 nm in diameter) and micropore (ca. 0.4-0.8 nm in diameter) systems. When compared to some Pd-supported carbons, Pd@hmC showed a high level of catalytic activity for oxidation of benzyl alcohol into benzaldehyde using atmospheric pressure of O(2) as an oxidant. The Pd@hmC composite also exhibited a high level of catalytic activity for aerobic oxidations of other primary benzylic and allylic alcohols into corresponding aldehydes. The presence of a well-developed pore system in the lateral carbon shell enabled efficient diffusion of both substrates and products to reach the central Pd nanoparticles, leading to such high catalytic activities. This core-shell structure also provided high thermal stability of Pd nanoparticles toward coalescence and/or aggregation due to the physical isolation of each Pd nanoparticle from neighboring particles by the carbon shell: this specific property of Pd@hmC resulted in possible regeneration of catalytic activity for these aerobic oxidations by a high-temperature heat treatment of the sample recovered after catalytic reactions.  相似文献   

12.
Pd(OAc)(2) in DMSO is an effective catalyst for the aerobic oxidation of alcohols and numerous other organic substrates. Kinetic studies of the catalytic oxidation of primary and secondary benzylic alcohol substrates provide fundamental insights into the catalytic mechanism. In contrast to the conclusion reached in our earlier study (J. Am. Chem. Soc. 2002, 124, 766-767), we find that Pd(II)-mediated alcohol oxidation is the turnover-limiting step of the catalytic reaction. At elevated catalyst loading, however, the rate of catalytic turnover is limited by the dissolution of oxygen gas into solution. This mass-transfer rate is measured directly by using gas-uptake methods, and it correlates with the maximum rate observed during catalysis. Initial-rate studies were complemented by kinetic analysis of the full-reaction timecourses at different catalyst concentrations. Kinetic fits of these traces reveal the presence of unimolecular and bimolecular catalyst decomposition pathways that compete with productive catalytic turnover.  相似文献   

13.
The replacement of toxic Cr(VI) for O2 and of chlorinated solvents for supercritical carbon dioxide (or ionic liquids) in the oxidation of alcohols remains hindered by the low selectivity and activity of the current heterogeneous catalysts. Using an integrated approach that combines sol-gel entrapped perruthenate as aerobic catalyst, an encapsulated ionic liquid as solubility promoter, and scCO2 as the reaction solvent, we have developed a system capable of rapidly converting different alcohols into carbonyl compounds with complete selectivity, including substrates which are otherwise difficult to oxidise. The methodology is generally applicable and may easily be extended to other waste-free, catalytic syntheses of fine chemicals.  相似文献   

14.
Treatment of a stoichiometric hydroxyapatite (HAP), Ca10(PO4)6(OH)2, with PdCl2(PhCN)2 gives a new type of palladium-grafted hydroxyapatite. Analysis by means of powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX), IR, and Pd K-edge X-ray absorption fine structure (XAFS) proves that a monomeric PdCl2 species is chemisorbed on the HAP surface, which is readily transformed into Pd nanoclusters with a narrow size distribution in the presence of alcohol. Nanoclustered Pd0 species can effectively promote the alcohol oxidation under an atmospheric O2 pressure, giving a remarkably high turnover number (TON) of up to 236,000 with an excellent turnover frequency (TOF) of approximately 9800 h(-1) for a 250-mmol-scale oxidation of 1-phenylethanol under solvent-free conditions. In addition to advantages such as a simple workup procedure and the ability to recycle the catalyst, the present Pd catalyst does not require additives to complete the catalytic cycle. The diameters of the generated Pd nanoclusters can be controlled upon acting on the alcohol substrates used. Oxidation of alcohols is proposed to occur primarily on low-coordination sites within a regular arrangement of the Pd nanocluster by performing calculations on the palladium crystallites.  相似文献   

15.
The combination of RuCl2(PPh3)3 and TEMPO affords an efficient catalytic system for the aerobic oxidation of a variety of primary and secondary alcohols, giving the corresponding aldehydes and ketones, in >99% selectivity in all cases. The Ru/TEMPO system displayed a preference for primary vs secondary alcohols. Results from Hammett correlation studies (rho = -0.58) and the primary kinetic isotope effect (kH/kD = 5.1) for the catalytic aerobic benzyl alcohol oxidations are inconsistent with either an oxoruthenium (O=Ru) or an oxoammonium based mechanism. We postulate a hydridometal mechanism, involving a "RuH2(PPh3)3" species as the active catalyst. TEMPO acts as a hydrogen transfer mediator and is either regenerated by oxygen, under catalytic aerobic conditions, or converted to TEMPH under stoichiometric anaerobic conditions.  相似文献   

16.
Recently, dispersions of gold nanoclusters in liquid media (colloidal nanogold) have been extensively used as quasi‐homogeneous catalysts for various aerobic oxidation reactions. This review describes recent progress in such reactions, with a focus on our comprehensive studies on gold clusters (<2 nm) stabilized by poly(N‐vinyl‐2‐pyrrolidone) and their participation in oxidation reactions of alcohols, α‐hydroxylation reactions of benzylic ketones, and homocoupling reactions of organoboronates, as well as formal Lewis acidic reactions, such as intramolecular hydroalkoxylation and hydroamination reactions of nonactivated alkenes. Mechanistic studies have shown that a partial electron transfer from the gold clusters to O2 generates superoxide‐ or peroxide‐like species and Lewis acidic centers, both of which play essential roles in the catalytic reactions.  相似文献   

17.
采用浸渍法制备了RuO2/γ-Al2O3和RuO2-CeO2/γ-Al2O3催化剂,利用XRD,XPS和ESR分析了催化剂的结构,并研究了湿式氧化降解苯酚的活性.结果表明,两种催化剂表面RuO2均有良好的分散性,并且催化剂表面存在氧空位和化学吸附氧,CeO2的掺杂使催化剂表面氧空位和化学吸附氧数量增加.两种催化剂对湿式氧化降解苯酚具有良好的催化活性,当苯酚质量浓度为4200mg/L,在150℃和3MPa下,RuO2/γ-Al2O3催化剂湿式氧化降解苯酚反应150min后,苯酚全部被去除,RuO2-CeO2/γ-Al2O3催化剂反应60min后,苯酚的去除率为96%.  相似文献   

18.
通过金属离子替代的方法设计了催化氧化性能不同的Mg-Al-Ru-CO3类水滑石、Co-Al-Ru-CO3类水滑石和Ru-Co(OH)2-CeO2等三种催化剂. XRD实验表明钌部分替换制得的Mg-Al-Ru-CO3和Co-Al-Ru-CO3可保持水滑石的结构; 但用铈替代铝之后得到的Ru-Co(OH)2-CeO2催化剂无法保持水滑石的结构, 而是由氢氧化钴和二氧化铈的微晶组成. XPS 和Ru K-edge XAFS的测试结果证实Mg-Al-Ru-CO3催化剂中钌被等键长的6个氧原子包围, 该催化剂可有效地催化氧化醇类; Co-Al-Ru-CO3催化剂中钌被两种键长不等的6个氧原子包围, 其中短键长的Ru═O是催化氧化性能增强的原因; Ru-Co(OH)2-CeO2催化剂中钌被两种键长不等的5个氧原子包围, 其对于各类醇均有高效的催化氧化性能, 原因归功于配位数少的钌物种.  相似文献   

19.
Efficient heterogeneous Cu-catalyzed aerobic oxidation of benzyl alcohols was discolsed. The combination of HKUST-1 and ABNO exhibited enhanced catalytic activity compare to the previous HKUST-1/TEMPO system in aerobic oxidation of benzyl alcohols. It was observed that the present catalyst was intrinsically heterogeneous and reusable.  相似文献   

20.
Au nanoclusters with an average size of approximately 1 nm size supported on HY zeolite exhibit a superior catalytic performance for the selective oxidation of 5‐hydroxymethyl‐2‐furfural (HMF) into 2,5‐furandicarboxylic acid (FDCA). It achieved >99 % yield of 2,5‐furandicarboxylic acid in water under mild conditions (60 °C, 0.3 MPa oxygen), which is much higher than that of Au supported on metal oxides/hydroxide (TiO2, CeO2, and Mg(OH)2) and channel‐type zeolites (ZSM‐5 and H‐MOR). Detailed characterizations, such as X‐ray diffraction, transmission electron microscopy, N2‐physisorption, and H2‐temperature‐programmed reduction (TPR), revealed that the Au nanoclusters are well encapsulated in the HY zeolite supercage, which is considered to restrict and avoid further growing of the Au nanoclusters into large particles. The acidic hydroxyl groups of the supercage were proven to be responsible for the formation and stabilization of the gold nanoclusters. Moreover, the interaction between the hydroxyl groups in the supercage and the Au nanoclusters leads to electronic modification of the Au nanoparticles, which is supposed to contribute to the high efficiency in the catalytic oxidation of HMF to FDCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号