首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of the quantum formalism.  相似文献   

2.
On the Classical Limit in Bohm’s Theory   总被引:1,自引:0,他引:1  
The standard means of seeking the classical limit in Bohmian mechanics is through the imposition of vanishing quantum force and quantum potential for pure states. We argue that this approach fails, and that the Bohmian classical limit can be realized only by combining narrow wave packets, mixed states, and environmental decoherence.  相似文献   

3.
Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to what extent, the importance of information, observation, and the like in quantum theory can be understood from a Bohmian perspective. I would like to explore the hypothesis that the idea that information plays a special role in physics naturally emerges in a Bohmian universe.  相似文献   

4.
In a recent article (Wiseman in New J. Phys. 9:165, 2007), Wiseman has proposed the use of so-called weak measurements for the determination of the velocity of a quantum particle at a given position, and has shown that according to quantum mechanics the result of such a procedure is the Bohmian velocity of the particle. Although Bohmian mechanics is empirically equivalent to variants based on velocity formulas different from the Bohmian one, and although it has been proven that the velocity in Bohmian mechanics is not measurable, we argue here for the somewhat paradoxical conclusion that Wiseman’s weak measurement procedure indeed constitutes a genuine measurement of velocity in Bohmian mechanics. We reconcile the apparent contradictions and elaborate on some of the different senses of measurement at play here.  相似文献   

5.
Bohmian mechanics provides an explanation of quantum phenomena in terms of point-like particles guided by wave functions. This review focuses on the use of nonrelativistic Bohmian mechanics to address practical problems, rather than on its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (nonunitary and nonlinear) quantum problems where the influence of the environment or the nonsimulated degrees of freedom are relevant. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in those types of problems that present nonunitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.  相似文献   

6.
In the framework of Bohmian quantum mechanics, the Klein–Gordon equation can be seen as representing a particle with mass m which is guided by a guiding wave ?(x) in a causal manner. Here a relevant question is whether Bohmian quantum mechanics is applicable to a non-linear Klein–Gordon equation? We examine this approach for ?4(x) and sine-Gordon potentials. It turns out that this method leads to equations for quantum states which are identical to those derived by field theoretical methods used for quantum solitons. Moreover, the quantum force exerted on the particle can be determined. This method can be used for other non-linear potentials as well.  相似文献   

7.
宋阳  赵双  郭福明  杨玉军  李苏宇 《中国物理 B》2016,25(3):33204-033204
The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments.  相似文献   

8.
No Heading Conventional relativistic quantum mechanics, based on the Klein-Gordon equation, does not possess a natural probabilistic interpretation in configuration space. The Bohmian interpretation, in which probabilities play a secondary role, provides a viable interpretation of relativistic quantum mechanics. We formulate the Bohmian interpretation of many-particle wave functions in a Lorentz-covariant way. In contrast with the nonrelativistic case, the relativistic Bohmian interpretation may lead to measurable predictions on particle positions even when the conventional interpretation does not lead to such predictions.  相似文献   

9.
10.
Complexified Liénard–Wiechert potentials simplify the mathematics of Kerr–Newman particles. Here we constrain them by fiat to move along Bohmian trajectories to see if anything interesting occurs, as their equations of motion are not known. A covariant theory due to Stueckelberg is used. This paper deviates from the traditional Bohmian interpretation of quantum mechanics since the electromagnetic interactions of Kerr–Newman particles are dictated by general relativity. A Gaussian wave function is used to produce the Bohmian trajectories, which are found to be multi-valued. A generalized analytic continuation is introduced which leads to an infinite number of trajectories. These include the entire set of Bohmian trajectories. This leads to multiple retarded times which come into play in complex space-time. If one weights these trajectories by their natural Bohmian weighting factors, then it is found that the particles do not radiate, that they are extended, and that they can have a finite electrostatic self energy, thus avoiding the usual divergence of the charged point particle. This effort does not in any way criticize or downplay the traditional Bohmian interpretation which does not assume the standard electromagnetic coupling to charged particles, but it suggests that a hybridization of Kerr–Newman particle theory with Bohmian mechanics might lead to interesting new physics, and maybe even the possibility of emergent quantum mechanics.  相似文献   

11.
12.
A novel solution to the quantum backreaction problem in a mixed quantum-classical simulation is provided using the Bohmian interpretation of quantum mechanics. The Bohmian backreaction is unique, computationally simple, features reaction channel branching, and easily gives the full classical limit. The Bohmian quantum-classical method is illustrated by application to a model of O2 interacting with a Pt surface.  相似文献   

13.
It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (statistical mixture) or a system that is entangled with another system (reduced density matrix). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the conditional density matrix, conditional on the configuration of the environment. A precise definition can be given in the context of Bohmian mechanics, whereas orthodox quantum mechanics is too vague to allow a sharp definition, except perhaps in special cases. In contrast to statistical and reduced density matrices, forming the conditional density matrix involves no averaging. In Bohmian mechanics with spin, the conditional density matrix replaces the notion of conditional wave function, as the object with the same dynamical significance as the wave function of a Bohmian system.PACS number:03.65.Ta (foundations of quantum mechanics)  相似文献   

14.
Mach’s principle asserts that the inertial mass of a body is related to the distribution of other distant bodies. This means that in the absence of other bodies, a single body has no mass. In this case, talking about motion is not possible, because the detection of motion is possible only relative to other bodies. But in physics we are faced with situations that are not fully Machian. As in the case of general theory of relativity where geodesics exist in the absence of any matter, the motion has meaning. Another example which is the main topic of our discussion, refers to Bohmian quantum mechanics, where the inertial mass of a single particle does not vanish, but is modified. We can call such situations in which motion or mass of a single particle has meaning, pseudo-Machian situations. In this paper, we use the Machian or pseudo-Machian considerations to clarify under what circumstances and how a Machian effect leads us to Bohmian quantum mechanics. Then, we shall get the Bohmian quantum potential and its higher order terms for the Klein-Gordon particle through Machian considerations, without using any quantum mechanical postulate or operator formalism.  相似文献   

15.
16.
17.
The bounded rationality mainstream is based on interesting experiments showing human behaviors violating classical probability (CP) laws. Quantum probability (QP) has been shown to successfully figure out such issues, supporting the hypothesis that quantum mechanics is the central fundamental pillar for brain function and cognition emergence. We discuss the decision-making model (DMM), a paradigmatic instance of criticality, which deals with bounded rationality issues in a similar way as QP, generating choices that cannot be accounted by CP. We define this approach as criticality-induced bounded rationality (CIBR). For some aspects, CIBR is even more satisfactory than QP. Our work may contribute to considering criticality as another possible fundamental pillar in order to improve the understanding of cognition and of quantum mechanics as well.  相似文献   

18.
19.
We propose a new initial condition for the homogeneous and isotropic quantum cosmology, where the source of the gravitational field is a conformally coupled scalar field, and the maximally symmetric hypersurfaces have positive curvature. After solving corresponding Wheeler–DeWitt equation, we obtain exact solutions in both classical and quantum levels. We propose appropriate initial condition for the wave packets which results in a complete classical and quantum correspondence. These wave packets closely follow the classical trajectories and peak on them. We also quantify this correspondence using de Broglie–Bohm interpretation of quantum mechanics. Using this proposal, the quantum potential vanishes along the Bohmian paths and the classical and Bohmian trajectories coincide with each other. We show that the model contains singularities even at the quantum level. Therefore, the resulting wave packets closely follow the classical trajectories from big-bang to big-crunch.  相似文献   

20.
Quantum Mechanics is a good example of a successful theory. Most of atomic phenomena are described well by quantum mechanics and cases such as Lamb Shift that are not described by quantum mechanics, are described by quantum electrodynamics. Of course, at the nuclear level, because of some complications, it is not clear that we can claim the same confidence. One way of taking these complications and corrections into account seems to be a modification of the standard quantum theory. In this paper and its follow ups we consider a straightforward way of extending quantum theory. Our method is based on a Bohmian approach. We show that this approach has the essential ability for extending quantum theory, and we do this by introducing “non-Bohmian” forms for the quantum potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号