首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a comprehensive perspective of the metric of quantum states with a focus on the geometry in the background independent quantum mechanics. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kähler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space when the limit ?→0, we obtain the metric of quantum states in the configuration space without imposing the limiting condition ?→0. Here Planck’s constant ? is absorbed in the quantity like Bohr radii \(\frac{1}{2mZ\alpha}\sim a_{0}\). While exploring the metric structures associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr’s radii as: ds 2=a 0 2 (? Ψ)2.  相似文献   

2.
In the paper, a new construction of the theory of partitions of integers is proposed. The author defines entropy as the natural logarithm of the number of partitions of a number M into natural summands with repetitions allowed p(M) and repetitions forbidden q(M). The passage from ln p(M) to lnq(M) through the mesoscopic values M → 0 is studied. The topological transition from the mesoscopic lower levels of the Bohr–Kalckar construction to the macroscopic levels corresponding to the critical number of neutrons according to the consequence of Einstein’s inequality Mc N c , where c is determined for the particles of the given atomic nucleus. The role of quantum mechanics in establishing the new world outlook in physics is analyzed. It is pointed out that the main equations of thermodynamics in the volume “Statistical Physics” of the Landau–Lifshits treatise are obtained without appealing to the so-called “three main principles of thermodynamics”. It is also pointed out that Niels Bohr’s liquid model of the nucleus does not involve any interaction of particles in the form of attraction and is based on the presence of a common potential trough for all elements of the nucleus. The author constructs a new approach to thermodynamics, using quantum mechanics and the Earth’s gravitational attraction as a common potential trough.  相似文献   

3.
The theoretical formalism of the implementation of the Deutsch-Jozsa algorithm relies on von Neumann’s theory. We try to investigate whether von Neumann’s theory meet our physical world. We derive a proposition concerning a quantum expectation value under the assumption of the existence of the orientation of reference frames in N spin-1/2 systems (1≤N<+∞). This assumption intuitively depictures our physical world. However, the quantum predictions within the formalism of von Neumann’s projective measurement violate the proposition with a magnitude that grows exponentially with the number of particles. Therefore, von Neumann’s theory cannot depicture our physical world with a violation factor that grows exponentially with the number of particles. Hence, von Neumann’s theory cannot meet the Deutsch-Jozsa algorithm. We propose the solution of the problem. Our solution is equivalent to changing Planck’s constant (?) to new constant (\(\hbar/\sqrt{2}\)). It may be that a new type of the quantum theory early approaches Newton’s theory in the macroscopic scale than the old quantum theory does so.  相似文献   

4.
Lately, the yellow series of P-excitons in cuprous oxide could be resolved up to the principal quantum number n = 25. Adding a magnetic field, leads to additional confinement normal to the field. Thereby, the transition associated with the exciton n is transformed into the transition between the electron and hole Landau levels with quantum number n, once the associated magnetic length becomes smaller than the related exciton Bohr radius. The magnetic field of this transition scales roughly as n–3. As a consequence of the extended exciton series, we are able to observe Landau level transitions with unprecedented high quantum numbers of more than 75.  相似文献   

5.
We discuss various infinite-dimensional configuration spaces that carry measures quasi-invariant under compactly supported diffeomorphisms of a manifold M corresponding to a physical space. Such measures allow the construction of unitary representations of the diffeomorphism group, which are important to nonrelativistic quantum statistical physics and to the quantum theory of extended objects in M = ?d. Special attention is given to measurable structure and topology underlying measures on generalized configuration spaces obtained from self-similar random processes (both for d = 1 and d > 1), which describe infinite point configurations having accumulation points.  相似文献   

6.
The E(5) symmetry describes nuclei related to the U(5)-SO(6) phase transition, while the X(5) symmetry is related to the U(5)-SU(3) phase transition. First, a chain of potentials interpolating between the U(5) symmetry of the five-dimensional harmonic oscillator and the E(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 = E(4)/E(2) ratios of 2.093, 2.135, and 2.157 (compared to the ratio of 2.000 of the U(5) case and the ratio of 2.199 of the E(5) case) are derived numerically and compared to existing experimental data, suggesting several new experiments. TheX(5) symmetry describes nuclei characterized byR4=2.904.Using the same separation of variables of the original Bohr Hamiltonian as in X(5), an exactly soluble model with R4=2.646 is constructed and its parameter-independent predictions are compared to existing spectra and B(E2) values. In addition, a chain of potentials interpolating between this new model and the X(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 ratios of 2.769, 2.824, and 2.852 are derived numerically and compared to existing experimental data, suggesting several new experiments.  相似文献   

7.
We investigate quantum echo control and Bell state swapping for two atomic qubits (TAQs) coupling to two-mode vacuum cavity field (TMVCF) environment via two-photon resonance. We discuss the effect of initial entanglement factor ?? and relative coupling strength R=g1/g2 on quantum state fidelity of TAQs, and analyze the relation between three kinds of quantum entanglement(C(ρa),C(ρf),S(ρa)) and quantum state fidelity, then reveal physical essence of quantum echo of TAQs. It is shown that in the identical coupling case R=1, periodic quantum echo of TAQs with π cycle is always produced, and the value of fidelity can be controlled by choosing appropriate ?? and atom-filed interaction time. In the non-identical coupling case R≠1, quantum echoes with periods of π, 2π and 4π can be formed respectively by adjusting R. The characteristics of quantum echo results from the non-Markovianity of TMVCF environment, and then we propose Bell state swapping scheme between TAQs and two-mode cavity field.  相似文献   

8.
The additional information within a Hamilton–Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of \(\psi \) that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton–Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi’s theorem generates a microstate-dependent time parametrization \(t-\tau =\partial _E W\) even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton–Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton–Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.  相似文献   

9.
A theory is developed for fractional quantum Hall effect in terms of composite (c)-bosons (fermions) without useing Laughlin’s results about the fractional charge. Here the c-particle (fermion, boson) is defined as a bound composite fermion (boson) containing a conduction electron and an even (odd) number of fluxons (elementary magnetic fluxes). The Bose-condensed c-bosons, each containing an electron and an odd number m of fluxons at the filling factor ν=1/m is shown to generate the Hall conductivity plateau value m e 2/h, where the density of c-particles, \(n_{\phi }^{(m)}\), either bosonic or fermionic, with m fluxons is given by \(n_{\phi }^{(m)}=n_{\mathrm {e}}/m\), n e = electron density. The only assumption is that any c-fermion carries a charge magnitude equal to the electron charge e. The quantum Hall state is shown to be more stable at ν=1/3 than at ν=1.  相似文献   

10.
11.
12.
The main properties and the type of the field-tuned quantum critical point in the heavy-fermion metal CeCoIn5 that arise upon application of magnetic fields B are considered within a scenario based on fermion condensation quantum phase transition. We analyze the behavior of the effective mass, resistivity, specific heat, charge, and heat transport as functions of applied magnetic fields B and show that, in the Landau Fermi liquid regime, these quantities demonstrate critical behavior, which is scaled by the critical behavior of the effective mass. We show that, in the high-field non-Fermi liquid regime, the effective mass exhibits very specific behavior, M*~ T? 2/3, and the resistivity demonstrates T2/3 dependence. Finally, at elevated temperatures, it changes to M*~T?1/2, while the resistivity becomes linear in T. In zero magnetic field, the effective mass is controlled by temperature T and the resistivity is also linear in T. The obtained results are in good agreement with recent experimental facts.  相似文献   

13.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called “microscopic theory”, applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen–Specker–Bell theorem and Gleason’s theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.  相似文献   

14.
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch’s algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f(x). So we have another noisy function g(x). The relation between them is g(x) = f(x) ± O(??). Here O(??) ? 1 is the noise term. The goal is to determine the noisy function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.  相似文献   

15.
In this work, we study the so-called quantitative complementarity quantities. We focus in the following physical situation: two qubits (q A and q B ) are initially in a maximally entangled state. One of them (q B ) interacts with a N-qubit system (R). After the interaction, projective measurements are performed on each of the qubits of R, in a basis that is chosen after independent optimization procedures: maximization of the visibility, the concurrence, and the predictability. For a specific maximization procedure, we study in detail how each of the complementary quantities behave, conditioned on the intensity of the coupling between q B and the N qubits. We show that, if the coupling is sufficiently “strong,” independent of the maximization procedure, the concurrence tends to decay quickly. Interestingly enough, the behavior of the concurrence in this model is similar to the entanglement dynamics of a two qubit system subjected to a thermal reservoir, despite that we consider finite N. However, the visibility shows a different behavior: its maximization is more efficient for stronger coupling constants. Moreover, we investigate how the distinguishability, or the information stored in different parts of the system, is distributed for different couplings.  相似文献   

16.
17.
Spaces of constant curvature and their motion groups are described most naturally in the Cartesian basis. All these motion groups, also known as CK groups, are obtained from an orthogonal group by contractions and analytical continuations. On the other hand, quantum deformation of orthogonal group SO(N) is most easily performed in the so-called symplectic basis. We reformulate its standard quantum deformation to the Cartesian basis and obtain all possible contractions of quantum orthogonal group SO q (N) for both untouched and transformed deformation parameters. It turned out that, similar to the undeformed case, all CK contractions of SO q (N) are realized. An algorithm for obtaining nonequivalent (as Hopf algebra) contracted quantum groups is suggested. Contractions of SO q (N), N = 3, 4, 5, are regarded as examples.  相似文献   

18.
The issue of vacuum stability of standard model (SM) is discussed by embedding it within the TeV scale left–right quark see-saw model. The Higgs potential in this case has only two coupling parameters (λ1, λ2) and two mass parameters. There are only two physical neutral Higgs bosons (h,H), the lighter one being identified with the 126 GeV Higgs boson. We explore the range of values for (λ1, λ2) for which the vacuum is stable for all values of the Higgs fields till 1016 GeV. Combining with the further requirement that the scalar self-couplings remain perturbative till 1016 GeV, we find (i) an upper and lower limit on the second Higgs (H) mass to be within the range: 0.4 ≤ (MH/vR) ≤ 0.7, where vR is the parity breaking scale and (ii) the masses of heavy vector-like top, bottom and τ partner fermions (P3, N3,E3) have an upper bound ≤ vR. These predictions can be tested at LHC and future higher energy colliders.  相似文献   

19.
As pointed out earlier, the commutation relation 1/i[A, B]=C for quantum mechanical observablesA, B andC by itself does not imply the uncertainty relation ΔA·ΔB≧1/2¦¯C¦. In this note,A, B andC are assumed to be generators of a unitary representation of a suitable Lie group, such that is implied by the group structure. This assumption is then sufficient to yield.  相似文献   

20.
This paper investigates the influence of the spin squeezing parameter γ, the external magnetic field B and the temperature T on the concurrence (C), the quantum discord (QD), and the geometric quantum discord (GQD) in the two-qubit two-axis spin squeezing model in thermal equilibrium under an external magnetic field. The results show that the spin squeezing parameter γ has a positive effect on all three correlations. When the system is in the ground state, the external magnetic field B has a weakening effect on the three types of quantum correlations. Particularly, the spin squeezing parameter can be used to alleviate the destructive effect of the magnetic field on the geometric quantum discord. At a relatively high temperature, the externally applied magnetic field B helps enhance the quantum discord (QD). Further, the quantum discord is more robust than concurrence, and thus is more suitable for use as a quantum resource in information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号