首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminol and hemin dual-functionalized silica nanoparticles were synthesized using a typical reverse water-in-oil microemulsion protocol. The obtained nanoparticles were further characterized by transmission electron microscopy, scanning electron microscopy, atomic absorption spectrometry, chemiluminescence, and electrochemiluminescence. The results indicated that the luminol and hemin dual-functionalized silica nanoparticles exhibited significantly higher chemiluminescence and electrochemiluminescence intensities than those of luminol functionalized silica nanoparticles due to the catalytic effect of hemin on the chemiluminescence and electrochemiluminescence of luminol. Furthermore, a simple and sensitive label-free electrochemiluminescence DNA biosensor was developed based on the chitosan modified luminol and hemin dual-functionalized silica nanoparticles and a single-stranded DNA probe. The chitosan modified luminol and hemin dual-functionalized silica nanoparticles were immobilized on the surface of an indium-doped tin oxide electrode and the single-stranded DNA probe was immobilized on the surface of the nanoparticles through electrostatic interactions between single-stranded DNA and chitosan, which allowed hybridization with the target DNA sequences. The hybridization events were evaluated by electrochemiluminescence, and only the complementary sequence formed double-stranded DNA with the DNA probe to give strong electrochemiluminescence signals. Finally, the electrochemiluminescence intensity was found to be linearly related to the concentration of the complementary sequence at concentrations from 1.0?×?10?12 to 1.0?×?10?6?mol·L?1 with a detection limit of 5.0?×?10?13?mol·L?1.  相似文献   

2.
Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2 m2 g−1. The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu > Ni > Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry.  相似文献   

3.
This paper describes the preparation of a biocompatible electrostatic chitosan/pyridine-3,5-di-carboxylic acid (CH-PyCA) complex which is formed by the protonation (NH+ 3) of chitosan and deprotonation (COO?) of pyridine-3,5-di-carboxylic acid in an acidic medium under mild conditions. The crystalline and structural properties of prepared CH-PyCA complex were evaluated by UV, IR XRD and 1H-NMR spectroscopic studies. Thermal behavior of the complex was evaluated by differential scanning calorimetry (DSC) and thermogravimetry (TG). Antimicrobial activities examined against gram-positive bacteria (Listeria monocytogenes) and gram-negative bacteria (Escherichia coli) by agar diffusion plate method in the obtained CH-PyCA complex, were found to be much better than free chitosan and pyridine compounds and the obtained results indicate that the inhibitory effects of chitosan complex is dependent on the molecular weight, ionic strength, pH, and the degree of deacetylation of chitosan. The results show that the CH-PyCA complex might be a promising candidate for novel antimicrobial agents for biomedical applications.  相似文献   

4.
Chitosan membranes with trivalent lanthanide ion Eu3 + were prepared at a ratio of 3:1 w/w (chitosan:lanthanide). There was no membrane formation at a ratio of 1:1 w/w (chitosan: Eu3 + or Tb3 +); in this case a white solid powder was obtained. Both chitosan compounds were characterized by elemental analysis (CHN), thermal analysis (TG/DTG), scanning electron microscopy (SEM) and luminescence spectroscopy. CHN analysis was performed only for chitosan compounds in powder form, suggesting that these compounds have the general formula QUILn.6H2O, where QUI = Chitosan and Ln = Eu3 + or Tb3 +. The results of TG/DTG curves for chitosan membranes with Eu3 + ion indicate that the introduction of this metal into the chitosan structure causes gradual degradation in residual carbons, showing lower weight loss in the Eu3 + membranes compared to pure chitosan membrane. Analysis of luminescence demonstrated that chitosan membranes with Eu3 + ion exhibit emission in the visible region, showing emission bands from chitosan and Eu3 + moieties. For chitosan with Eu3 + and Tb3 + ions compounds, in powder form, the analysis of luminescence suggested that chitosan is not transferring energy to the lanthanide ion; however, the chemical region where the lanthanide ion is found breaks the selection rules and favors the emission of these ions.  相似文献   

5.
The capacity of the chitosan to complex metallic ions is one of its most important potentialities. This polymer shows a selectivity according to the considered cation. In the case of divalent ions the capacity to fix the metallic ions increases from 0.02 mmol/g of chitosan for Co2+, Ca2+ to 1.2 for Cu2+ in the same external conditions. Considering trivalent ions this capacity is from 0.2 mmol/g of chitosan for Pr3+ and Cr3+ to 1.47 for Eu3+ and Nd3+. This selectivity seems to be independent on the size and the hardness of the ions. This order in the selectivity is confirmed using potentiometric and spectrophotometric methods and does not depend on the physical form of chitosan. Recovery tests of metals were carried out on real effluents. The first results obtained confirm the initial interest in using chitosan as a depolluting agent, especially as a film.  相似文献   

6.
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, and non-toxicity. In this study, chitosan microspheres were successfully prepared by an adapted method of coagulation/dispersion. The degree of deacetylation of chitosan powder was obtained by NMR 1H and FTIR techniques. Chitosan powder and chitosan microspheres were characterized by BET surface area and scanning electron microscopy (SEM). The interactions among the chitosan microspheres and the vitamins A and E were characterized by FTIR. In order to evaluate the ability of interaction of vitamin A and vitamin E with the chitosan microspheres, the thermodynamic parameters were followed by calorimetric titration. Different experimental approaches were applied, such as adsorption isotherms, kinetics and thermodynamics studies. The obtained results showed that the interactions of chitosan microspheres with the vitamins were spontaneous, enthalpically and entropically favorable, indicating that the chitosan microspheres can be used with success in the controlled release of these vitamins.  相似文献   

7.
Tang Y  Chen B  Mo S 《Talanta》1996,43(5):761-765
A biological organism (chitosan) was utilized to preconcentrate lead ions from tap water. This preconcentration was achieved by mixing 0.8 ml of chitosan slurry with 10-50 ml of lead-containing solution and subsequently separating by centrifugation. The chitosan paste was then dissolved in 1 ml of 0.2% nitric acid and analysed by graphite furnace atomic absorption spectrometry. The extraction efficiency can approach 100% in the pH range 4-10. The amount of chitosan used was not critical. The effect of some impurities was also investigated. If six samples were prepared simultaneously, the time needed to preconcentrate each sample was less than 3 min. Two different modes of standard addition (the standard lead solutions being added before and after preconcentration) were used for analysis of tap water samples, and the results obtained by the two modes were found to be quite consistent.  相似文献   

8.
A polymer/layered silicate composite based on dimethyldioctadecylanimonium bentonite/chitosan magnetic nanoparticles was synthesized and characterized by field emission transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry. The prepared nanocomposite was used to isolate and preconcentrate celecoxib from human breast milk, urine and plasma samples. In this method, dimethyldioctadecylanimonium bentonite increases the accessibility of binding sites and adsorption capacity by high microporosity and large surface area, that has been realized for the first time in a magnetic chitosan nanoparticle support. A fractional factorial design was utilized for screening the experimental parameters. The effective parameters were then optimized by Box–Behnken design. Under the optimized conditions, the developed method exhibited wide linear ranges of 5–500 μg L−1 for plasma and urine and 10–500 μg L−1 for breast milk samples with satisfactory recoveries in the range of 96.7–99.0%. Limit of detection and quantification of celecoxib were in the ranges 0.3–3.2 and 0.99–10.56, respectively. The enrichment factors were obtained in the ranges 64.5–66.0, while precisions were <3.7%.  相似文献   

9.
This work presents the results of the modification of lateral groups of chitosan (2-amino-2-desoxy-β-D-glucose) by the reaction with different amino acids (glycine, L-lysine, -glutamic acid and L-isoleucine) under acid catalysis. The Cu2+ adsorption capacity of pure chitosan and of the chemically modified chitosans were also evaluated. The modification reaction favored the amide formation of the C-2 carbon of the glycoside ring under the adopted reaction conditions: reaction time and temperature and using sulfuric acid as a catalyst. The Cu2+ adsorption kinetics and equilibrium response using pure chitosan and the chemically modified chitosans as adsorbents showes that the adsorption capacity of equilibrium depended on the initial ion concentration. The response of each adsorbent gave good correlation with Langmuir's isotherm model. The following maximum adsorption capacity constants were obtained: 172.4 mg/g for chitosan and 69.9, 34.4, and 26.7 mg/g for modified chitosan with glycine, L-glutamic acid, and L-lysine, respectively. The adsorptive capacity seems to be dependent on the length and complexity of the added group.  相似文献   

10.
Biodegradable chitosan hollow microspheres have been fabricated by employing uniform sulfonated polystyrene (PS) particles as templates. The chitosan was adsorbed onto the surface of the sulfonated polystyrene templates through the electrostatic interaction between the sulfonic acid groups on the templates and the amino groups on the chitosan. Subsequently, the adsorbed chitosan was crosslinked by adding glutaraldehyde. After the removal of the sulfonated polystyrene core, chitosan hollow microspheres were obtained. The longer the sulfonation time used, the smaller the size of the hollow particles and the thicker the chitosan wall obtained. Fourier transform infrared spectrometry was used to characterize the component of the microspheres. The morphologies of the PS templates and the chitosan microspheres were observed by transmission electron microscopy and scanning electron microscopy. The controlled release behavior of the chitosan hollow microspheres was also primarily investigated.  相似文献   

11.
Cellulose/chitosan composites were successfully prepared in a new and basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN), by dissolving cellulose and chitosan in 70/30 (w/w) EDA/KSCN at ?19 °C, and then coagulating in methanol. Wide angle X-ray diffraction studies revealed that the EDA/KSCN solvent system is capable of disrupting the hydrogen bonds in both cellulose and chitosan and increase the amorphous regions. Stability tests proved that the composites are stable in acidic aqueous solution due to the hydrogen bonds formed between cellulose and chitosan. This is the first time to dissolve chitosan in a basic-based solvent system and prepare cellulose/chitosan composites in a straightforward way. The adsorption of heavy metal ions (Cu2+, Cd2+, and Pb2+) onto the cellulose/chitosan composites was investigated. The adsorption capacity is highly dependent on pH and the maximum metal uptake was obtained at pH 5.0. Increasing initial metal concentration enhanced the diffusion of metal ions to the composite surface and therefore the metal removal efficiency. Higher percentage of chitosan in the composites also led to higher metal adsorption. The results indicated that the prepared cellulose/chitosan (1:1) composite can adsorb 0.53 mmol/g Cu2+, 0.28 mmol/g Cd2+ and 0.16 mmol/g Pb2+ ions at pH 5.0. The Freundlich model and the pseudo-second-order model were in good agreement with the adsorption isotherms and kinetics, respectively. X-ray photoelectron spectroscopy studies indicated that the binding of heavy metal ions is attributed to the nitrogen atoms of amino groups in chitosan. The composites can be reused for metal removal.  相似文献   

12.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   

13.
A new low-molecular-weight antibacterial dye was obtained by reaction of Reactive Blue 19 and chitosan previously hydrolyzed with H2O2. The compounds were characterized by Fourier-transform infrared spectroscopy, 13C solid-state nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and antibacterial, solubility, and dyeing performance tests including color difference and fastness. The results show that chitosan dyes were generated with covalent bonds between carbon and nitrogen atoms via reaction of alkene group of dye and primary amine group of chitosan. According to solubility tests, the solubility of the chitosan dye was controlled by the molecular weight of chitosan. In addition, compared with Reactive Blue 19, the antibacterial property of the chitosan dye was increased against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Besides, chitosan dye demonstrated better lightfastness and waterfastness than the original dye. Therefore, chitosan dye provides a new perspective for improving decorative and antimicrobial properties of wood products.  相似文献   

14.
The anion-exchange behaviour of chitosan toward metavanadate was studied in salt solutions at different pH values. Filtered and acidified sea water was passed through a 500-mg chitosan column. Vanadium was determined by atomic absorption spectrometry with a graphite furnace and a deuterium background corrector on 5-mg aliquots of the homogenized column. The method was assessed for the 0.2–12.0 μg V 1-1 interval on the basis of the linear response for proportional amounts of vanadium in saline solutions and sea water and in the absence of interferences from smoke during atomization. Two sea-water samples gave 0.71±0.09 and 0.52±0.04 μg V 1-1.  相似文献   

15.
Many compounds are used for pest control during the production and storage of rice, making it necessary to employ multiclass methods for pesticide residues determination. For this purpose, QuEChERS‐based methods are very efficient, fast and accurate, and improvements in the clean‐up step are important, especially for complex matrices, like cereals. In this work, different sorbents such as chitosan, florisil®, alumina, diatomaceous earth, graphitized carbon black, besides the commonly used primary secondary amine and octadecylsilane, were evaluated for dispersive solid‐phase extraction clean‐up in acetate‐buffered QuEChERS method for the determination of residues of 20 representative pesticides and one metabolite in rice by liquid chromatography coupled to tandem mass spectrometry. The sorbent C18 presented the best results, however, chitosan showed similar results, and the best performance among the unconventional sorbents evaluated. The method limit of quantification, attending accuracy (70–120% recovery) and precision (RSD ≤20%) criteria, ranged from 5 to 20 μg/kg. Results showed that chitosan is an effective alternative to reduce analysis costs, maintaining the method reliability and accuracy.  相似文献   

16.
This work reports the reforming of bio-ethanol on chitosan–TiO2 hybrid photocatalysts at ambient temperature. The influence of chitosan composition on the photocatalytic performance of chitosan–TiO2 hybrid was studied. The hybrids were characterized by CHN elemental analysis, nitrogen adsorption–desorption isotherms, thermogravimetric analysis, diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the preparation variables used for the incorporation of chitosan on TiO2 promoted changes in the morphology, superficial area, crystal size and porosity of the photocatalyst, affecting the band gap of this semiconductor and consequently the reactivity of the chitosan–TiO2 hybrids. The catalysts were evaluated for hydrogen production from ethanol under visible light. It was demonstrated that the calcination temperature of 623 K and a chitosan content of 20% were the most appropriate preparation conditions and the resulting product displays a pore size of 1.9 nm, crystal size of 11.3 nm, BET area of 178 m2 g?1 and band gap of 2.92 eV. The calcination temperature of 623 K and incorporation of 20% of chitosan obtained the same results in the conversion rate of hydrogen in comparison to the pure TiO2 P25.  相似文献   

17.
《Analytical letters》2012,45(8):1183-1197
The magnetic chitosan was prepared by adding chitosan, Fe2+ and Fe3+ into a basic precipitant of NaOH solution. The synthetic magnetic chitosan was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and physical properties. The adsorption characteristics of magnetic chitosan for extracting pyrethroids from water samples were investigated. The analytes were separated by magnetic solid phase extraction and determined by high performance liquid chromatography. The optimum conditions of adsorption experiments were obtained: the amount of sorbent was 80 mg, the extraction time was 20 min, the washing solvent was 50% aqueous methanol, and the eluent was acetonitrile-acetic acid (99: 1, v/v). The obtained linearity of three pyrethroids was in the range of 30–3000 ng L?1. The detection limits of beta-cyfluthrin, cyhalothrin, and cyphenothrin were 7.5, 5.6, and 6.1 ng L?1, respectively. The intra-day and inter-day precisions of three pyrethroids were in the range of 3.6–5.2% and 5.9–8.6%, respectively. In the optimized conditions, three water samples were analyzed, and the recoveries of pyrethroids obtained were 83.2–95.2%.  相似文献   

18.
An intercomparison of the methodology (alpha, beta and gamma spectrometry) used for 238U, 235U and 210Pb determination was carried out based on 38 sediment samples. The activity range of the samples varied from 10–700 Bq/kg for 210Pb, 1–35 Bq/kg for 235U and 10–800 Bq/kg for 238U. Results obtained using the three methods were not statistically different at high activity levels, but agreement between the results decreased at lower sample activity levels. For 210Pb, the smallest difference was found between alpha and gamma spectrometry. A good correlation between results from alpha and gamma spectrometry was observed over the whole activity range. In beta spectrometry, the results were slightly higher than those obtained by alpha or gamma spectrometry due to the impurity of 228Ra. In 238U analysis, good correspondence was observed between 238U determined by gamma and alpha spectrometry, particularly at higher 238U activity concentrations over 100 Bq/kg. In 235U analysis, attention needs to be paid to interference from 226Ra and its reduction.  相似文献   

19.
Chemical modification of chitosan has become increasingly essential due to chitosan versatility that enables the material to be easily modified in a way of increasing its properties in adsorption processes. In this investigation, chitosan solution was cross‐linked with glutaraldehyde the cross‐linked solution was used in producing the beads and thereafter grafted with ethylene acrylic acid. The chemical functionalities of the beads were obtained by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), X‐ray diffraction (XRD) and Thermogravimetric analysis (TGA). Adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions from single component aqueous mixture by grafted cross‐linked chitosan beads (GXXB) was studied as a function of pH, temperature, initial concentration, contact time, agitation speed and ionic strength. Equilibrium data was obtained from the adsorption experiment, the data were applied in isotherm, thermodynamics and kinetic studies. The Langmuir, Temkin and Dubinin‐kaganer‐Radushkevich (DKR) model were successful in describing the isotherm data for the considered metal ions while the Freundlich model was not efficient in describing the experimental data. Pseudo‐second order and intra‐particle model described the kinetic data quite well. Thermodynamic parameters such as Gibb's free energy change (?Go), enthalpy change (?Ho) and entropy change (?So) were calculated and the results showed the adsorption of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions onto GXXB is spontaneous and endothermic in nature. Regeneration of the used adsorbent was effective for the studied metal ions.  相似文献   

20.
A chitosan resin possessing a phenylarsonic acid moiety (phenylarsonic acid type chitosan resin) was developed for the collection and concentration of trace uranium prior to inductively coupled plasma (ICP) atomic emission spectrometry (AES) measurement. The adsorption behavior of 52 elements was systematically examined by packing it in a minicolumn and measuring the elements in the effluent by ICP mass spectrometry. The resin could adsorb several cationic species by a chelating mechanism, and several oxo acids, such as Ti(IV), V(V), Mo(VI), and W(VI), by an anion-exchange mechanism and/or a chelating mechanism. Especially, U(VI) could be adsorbed almost 100% over a wide pH region from pH 4 to 8. Uranium adsorbed was easily eluted with 1 M nitric acid (10 mL), and the 25-fold preconcentration of uranium was achieved by using a proposed column procedure, which could be applied to the determination of trace uranium in seawater by ICP-AES. The limit of detection was 0.1 ng mL−1 for measurement by ICP-AES coupled with 25-fold column preconcentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号