首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct growth of CdS nanocrystals in functional solid‐state thermotropic liquid crystal (LC) small molecules and a conjugated LC polymer by in situ thermal decomposition of a single‐source cadmium xanthate precursor to fabricate LC/CdS hybrid nanocomposites is described. The influence of thermal annealing temperature of the LC/CdS precursors upon the nanomorphology, photophysics, and optoelectronic properties of the LC/CdS nanocomposites is systematically studied. Steady‐state PL and ultrafast emission dynamics studies show that the charge‐transfer rates are strongly dependent on the thermal annealing temperature. Notably, annealing at liquid‐crystal state temperature promotes a more organized nanomorphology of the LC/CdS nanocomposites with improved photophysics and optoelectronic properties. The results confirm that thermotropic LCs can be ideal candidates as organization templates for the control of organic/inorganic hybrid nanocomposites at the nanoscale level. The results also demonstrate that in situ growth of semiconducting nanocrystals in thermotropic LCs is a versatile route to hybrid organic/inorganic nanocomposites and optoelectronic devices.  相似文献   

2.
For plastic electronics and optics, the fabrication of smooth, transparent and stable crack-free inorganic oxide films (and patterning) on flexible polymeric substrates with strong bonding strength and controllable thickness from nanometers to micrometers is a key but still remains a challenge. Among versatile inorganic oxides, silica oxide film as SiO x is especially important because this semiconductor material could provide crucial properties in devices or serve as a base layer for further multilayer construction. In this paper, we describe a new interface-directed sol-gel method to fabricate flexible high quality silicon oxide film onto commodity plastics. The resulting crack-free silica film has strong covalent bonding with polymer substrates, homogeneous morphology with ultralow roughness, highly optical transparency, tunable thickness from nm to μm, and easy patterning ability. Such fabrication strategy relies on a novel photocatalytic oxidation reaction by photosensitive ammonium persulfate (APS), which is able to fabricate highly reactive hydroxyl monolayer surface on inert polymeric substrates. This kind of hydroxylated surface could serve as nucleation and growth sites to initiate surface sol-gel process. As a result, well-defined SiO x film deposition (gelation) occurs, and patterned hydroxylation regions could be easily utilized to induce the formation of patterned oxide film arrays. Our strategy also excludes the requirements of clean room and vacuum devices so as to fulfill low-cost and fast fabrication demands. Two application examples from such high quality SiO x layer onto plastics are given but should not be limited within these. One is that oxygen permeation rate of SiO x deposited polymer film decreases 25 times than pristine polymer substrate, which is good for the potential packaging materials. The other one is that silanization monolayer, for example, 3-aminopropyltriethoxysilane (APTES), could be successfully constructed onto silica layer through classical silanization reaction, which is applicable for many potential purposes, for instance, proteins could be accordingly immobilized onto plastic support with effective signal-to-background ratio. Moreover, we further demonstrate that this interface-directed sol-gel strategy is a general method which could be successfully extended to other high quality oxide film fabrication, e.g., TiO2.  相似文献   

3.
One-pot synthesis of high-quality zinc-blende CdS nanocrystals   总被引:5,自引:0,他引:5  
This paper reports a one-pot synthetic method for producing CdS nanocrystals. We have demonstrated that the nanocrystal nucleation and growth stages can be automatically separated in a homogeneous system with the presence of nucleation initiators. Accelerators used for more than 70 years in rubber vulcanization (i.e., tetraethylthiuram disulfides, and 2,2'-dithiobisbenzothiazole) were found to be effective nucleation initiators for CdS nanocrystal synthesis. The as-prepared CdS nanocrystals are highly monodisperse and possess a zinc blende crystal structure. The quantum yield of the band-gap photoluminescence is up to 12% when the surface-trap emission was totally eliminated after a gentle oxidation under laboratory fluorescent light.  相似文献   

4.
A wide range of biomineralization and templating methods exist for organizing inorganic materials at a wide range of length-scales. Here, we show that crystallographic control of the inorganic nanostructures is possible using synthetic biomolecular templates comprised of anionic DNA and cationic membranes, which self-assemble into a multilamellar structure where a periodic one-dimensional (1D) lattice of parallel DNA chains is confined between stacked two-dimensional (2D) lipid sheets. We have organized Cd2+ ions within the interhelical pores between DNA strands and subsequently reacted them with H2S to form CdS nanorods of controllable widths and crystallographic orientation. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by 60 degrees with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods.  相似文献   

5.
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy, and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.  相似文献   

6.
Natural systems often utilize a single protein to perform multiple functions. Control over functional specificity is achieved through interactions with other proteins at well-defined epitope binding sites to form a variety of functional coassemblies. Inspired by the biological use of epitope recognition to perform diverse yet specific functions, we present a Template Engineering Through Epitope Recognition (TEThER) strategy that takes advantage of noncovalent, molecular recognition to achieve functional versatility from a single protein template. Engineered TEThER peptides span the biologic-inorganic interface and serve as molecular bridges between epitope binding sites on protein templates and selected inorganic materials in a localized, specific, and versatile manner. TEThER peptides are bifunctional sequences designed to noncovalently bind to the protein scaffold and to serve as nucleation sites for inorganic materials. Specifically, we functionalized identical clathrin protein cages through coassembly with designer TEThER peptides to achieve three diverse functions: the bioenabled synthesis of anatase titanium dioxide, cobalt oxide, and gold nanoparticles in aqueous solvents at room temperature and ambient pressure. Compared with previous demonstrations of site-specific inorganic biotemplating, the TEThER strategy relies solely on defined, noncovalent interactions without requiring any genetic or chemical modifications to the biomacromolecular template. Therefore, this general strategy represents a mix-and-match, biomimetic approach that can be broadly applied to other protein templates to achieve versatile and site-specific heteroassemblies of nanoscale biologic-inorganic complexes.  相似文献   

7.
A strategy to prepare horizontally aligned single-walled carbon nanotubes(SWNTs) at moderate temperatures(≤600 ℃) were developed.Using ferocene as the catalyst precursor,Fe nanoparticles are formed in the gaseous phase and catalyze the nucleation and growth of SWNTs in situ.Then the resultant SWNTs are deposited onto the substrates downstream and aligned by the surface lattice of the ST-cut single crystal quartz.The preparation of SWNT arrays at moderate temperatures is important for combining the tube growth with device fabrication.  相似文献   

8.
This paper discusses synthetic strategies for fabrication of new organized planar inorganic, polymeric, composite and bio-inorganic nanostructures by methods based on chemical reactions and physical interactions at the gas-liquid interface, Langmuir monolayer technique, interfacial ligand exchange and substitution reactions, self-assembling and self-organization processes, DNA templating and scaffolding. Stable reproducible planar assemblies of ligand-stabilized molecular nanoclusters containing definite number of atoms have been formed on solid substrate surfaces via preparation and deposition of mixed Langmuir monolayers composed by nanocluster and surfactant molecules. A novel approach to synthesis of inorganic nanoparticles and to formation of self-organized planar inorganic nanostructures has been introduced. In that approach, nanoparticles and nanostructures are fabricated via decomposition of insoluble metal-organic precursor compounds in a layer at the gas-liquid interface. The ultimately thin and anisotropic dynamic monomolecular reaction system was realized in that approach with quasi-two-dimensional growth and organization of nanoparticles and nanostructures in the plain of Langmuir monolayer. Photochemical and redox reactions were used to initiate processes of interfacial nucleation and growth of inorganic phase. It has been demonstrated that morphology of resulting inorganic nanostructures can be controlled efficiently by variations of growth conditions via changes in state and composition of interfacial planar reaction media, and by variations of composition of adjacent bulk phases. Planar arrays and chains of iron oxide and ultrasmall noble metal (Au and Pd) nanoparticles, nanowires and new organized planar disk, ring, net-like, labyrinth and very high-surface area nanostructures were obtained by methods based on that approach. Highly organized monomolecular polymeric films on solid substrates were obtained via deposition of Langmuir monolayer formed by water-insoluble amphiphilic polycation molecules. Corresponding nanoscale-ordered planar polymeric nanocomposite films with incorporated ligand-stabilized molecular metallic nanoclusters and interfacially grown nanoparticles were fabricated successfully. Novel planar DNA complexes with amphiphilic polycation monolayer were formed at the gas-aqueous phase interface and then deposited on solid substrates. Toroidal and new net-like conformations were discovered in those complexes. Nanoscale supramolecular organization of the complexes was dependent on cationic amphiphile monolayer state during the DNA binding. These monolayer and multilayer DNA/amphiphilic polycation complex Langmuir-Blodgett films were used as templates and nanoreactors for generation of inorganic nanostructures via metal cation binding with DNA and following inorganic phase growth reactions. As a result, ultrathin polymeric nanocomposite films with integrated DNA building blocks and organized inorganic semiconductor (CdS) and iron oxide quasi-linear nanostructures were formed. It has been demonstrated that interaction of deposited planar DNA/amphiphilic polycation complexes with bulk phase colloid inorganic cationic ligands (CdSe nano-rods) can result in formation of new highly organized hybrid bio-inorganic nanostructures via interfacial ligand exchange and self-organization processes. The methods developed can be useful for investigation of fundamental mechanisms of nanoscale structural organization and transformation processes in various inorganic and molecular systems including bio-molecular and bio-inorganic nanostructures. Also, those methods are relatively simple, environmentally safe and thus could prove to be efficient practical instruments of molecular nanotechnology with potential of design and cost-effective fabrication of new controlled-morphology organized planar inorganic and composite nanostructured materials. Possible applications of obtained nanostructures and future developments are also discussed.  相似文献   

9.
An inverse emulsion technique which allows the anisotropic growth of a broad variety of inorganic nanoparticles, together with an efficient hydrophobization, is described. This method is based upon the combined use of amphiphilic copolymers, which act as emulsifiers as well as compatibilizers, and structure-directing agents that control the crystallization of the inorganic nanoparticles. As a consequence, water-soluble, structure-directing agents can now be applied for the synthesis of hydrophobic, shape-anisotropic nanocrystals. More precisely, spherical, rod-like, and branched CdS as well as Au nanoparticles were prepared. Due to their excellent hydrophobization, these particles were homogeneously incorporated into a poly(2-ethylhexyl methacrylate) matrix. Their shape-dependent properties were transferred to nanocomposites as demonstrated for branched CdS nanocrystals. In comparison to more traditional materials composed of branched CdS nanoparticles, which are stabilized by low molecular weight amphiphiles, our composites show much less scattering. This is due to the homogenous distribution of the nanoparticles in the matrix.  相似文献   

10.
We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization-dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multi-step synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ~450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents.  相似文献   

11.
Here, we report a novel strategy to prepare fluorescent semiconductor quantum dots (QDs) of core–shell type with CdSe–CdS QDs as a model system. Our synthesis was carried out in liquid paraffin, which is a natural, nontoxic, and cheap solvent. We applied a single injection of precursor for the shell growth at low temperature and gradual heating of the reaction mixture after that. By this manner, the Ostwald ripening of the cores was reduced, homogenous nucleation of the shell material was avoided, and highly monodisperse in size core–shell QDs were prepared. Our synthesis method allows working on open air; it is relatively fast and allows fine control over the shell growth process. It leads to the formation of core–shell CdSe–CdS QDs with fluorescence quantum yield as high as 65%. We described the optical properties of core–shell QDs by the model of attenuated quantum confinement.  相似文献   

12.
采用电化学方法在铟锡氧化物(ITO)导电玻璃上制备了高度有序的ZnO纳米棒阵列, 在ZnO纳米棒阵列上先后电化学沉积CdS纳米晶膜及聚3-己基噻吩(P3HT)薄膜得到P3HT修饰的一维有序壳核式CdS/ZnO纳米阵列结构, 并通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、能量散射X射线(EDX)等表征手段证实了该结构的形成. 以此纳米结构薄膜为光阳极组装新型半导体敏化太阳电池, 研究了CdS纳米晶膜的厚度和P3HT薄膜的沉积对电池光伏性能的影响, 初步探讨了电荷在电池结构中的传输机理, 结果表明, CdS纳米晶膜和P3HT薄膜的沉积有效地拓宽了光阳极的光吸收范围, 实验中电池的光电转换效率最高达到1.08%.  相似文献   

13.
Garcia A  Berthelot T  Viel P  Jégou P  Palacin S 《Chemphyschem》2011,12(16):2973-2978
The "3D amino-induced electroless plating" (3D-AIEP) process is an easy and cost-effective way to produce metallic patterns onto flexible polymer substrates with a micrometric resolution and based on the direct printing of the mask with a commercial printer. Its effectiveness is based on the covalent grafting onto substrates of a 3D polymer layer which presents the ability to entrap Pd species. Therefore, this activated Pd-loaded and 3D polymer layer acts both as a seed layer for electroless metal growth and as an interdigital layer for enhanced mechanical properties of the metallic patterns. Consequently, flexible and transparent poly(ethylene terephtalate) (PET) sheets were selectively metalized with nickel or copper patterns. The electrical properties of the obtained metallic patterns were also studied.  相似文献   

14.
簇形和花形CdS纳米结构的自组装及光催化性能   总被引:3,自引:0,他引:3  
通过可控溶剂热法, 利用乙二胺作为模板制备出簇形和花形硫化镉(CdS)纳米结构. 通过X射线衍射(XRD)和扫描电镜(SEM)观测其形貌和结构特征. XRD谱线显示, 簇形CdS为六方晶体结构, 而花形CdS纳米结构则为立方晶体. 实验结果表明, 整个自组装过程是由成核以及成核竞争引起的不同生长过程所组成的, 并且乙二胺的模板功能起了重要的作用. 通过不同时间和温度的实验, 深入探讨了簇形和花形CdS纳米结构的自组装机理. 室温光致发光谱(PL)显示这两种纳米结构在433 nm和565 nm附近有较强的发射峰, 分别对应激子发射和表面缺陷发光. 通过Brunauer-Emmett-Teller (BET)方法测试其比表面积. 研究了高压汞灯照射下, 簇形和花形CdS纳米结构在甲基橙(MeO)溶液中的光催化性能. 结果显示, 由于其较大的比表面积, 花形CdS纳米结构的光催化性能要远优于其它CdS材料.  相似文献   

15.
Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.  相似文献   

16.
刘学  马华  徐恒  计海聪  王栋 《应用化学》2020,37(5):555-561
高性能的柔性锂离子电池对可穿戴电子设备的发展具有重要意义。采用化学氧化法在聚对苯二甲酸乙二醇酯(PET)无纺布基材上原位聚合聚吡咯(PPy),并通过控制反应条件得到不同形貌的聚吡咯电极材料。当反应体系中剪切力较小时,得到纳米线状聚吡咯(PPy-NW/PET),反之,为纳米颗粒形貌的聚吡咯(PPy-NP/PET)。PPy纳米线的平均直径为460 nm,在包覆PET纤维的同时相互交叠,形成了三维网状导电通道。该PPy/PET可以直接作为无粘结剂的柔性电极材料。电化学测试结果表明,PPy-NW/PET电极材料的性能更优异,其首次放电和充电的比容量分别为124和98 mA[DK1]·h/g,且具有良好的柔性和稳定性。本文对柔性、轻质电极材料的制备及其在储能领域的应用提供了很好的思路。  相似文献   

17.
High-density CdS nanowire (NW) arrays were successfully grown on fluorine-doped tin oxide (FTO)-coated glass substrates by vapor–liquid–solid (VLS) mechanism at a remarkably reduced temperature of ~450 °C. Bi catalyst layer and polyvinyl alcohol (PVA) played a major role in the low-temperature synthesis of high-quality CdS NW arrays. CdS NWs were defect free single crystalline Wurtzite crystals and they were 50–100 nm and 2–5 μm in diameter and length, respectively. CdS NWs were combined with poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), a conjugated polymer to form organic–inorganic hybrid structures. The UV–visible light absorption and emission behavior of MEH-PPV/CdS hybrids was investigated and their potential to be used as photovoltaic cells was demonstrated.  相似文献   

18.
We demonstrate a new hierarchical self-assembly strategy for the formation of photonic arrays containing quantum dots (QDs), in which sequential self-assembly steps introduce organization on progressively longer length scales, ranging from the nanoscale to the microscale regimes. The first step in this approach is the self-assembly of diblock copolymers to form block ionomer reverse micelles (SA1); within each micelle core, a single CdS QD is synthesized to yield the hybrid building block BC-QD. Once SA1 is completed, the hydrophobic BD-QD building blocks are blended with amphiphilic block copolymer stabilizing chains in an organic solvent; water addition induces secondary self-assembly (SA2) to form quantum dot compound micelles (QDCMs). Finally, aqueous dispersions of QDCMs are slowly evaporated to induce the formation of three-dimensional (3D) close-packed arrays in a tertiary self-assembly step (SA3). The resulting hierarchical assemblies, consisting of a periodic array of hybrid spheres each containing multiple CdS QDs, exhibit the collective property of a photonic stop band, along with photoluminescence arising from the constituent QDs. A high degree of structural control is possible at each level of organization by judicious selection of experimental variables, allowing various parameters governing the collective optical properties, including QD size, nanoparticle spacing, and mesocale periodicity, to be independently tuned. The resulting control over optical properties via successive self-assembly steps should provide new opportunities for hierarchical materials for QD lasers and all-optical switching.  相似文献   

19.
A novel method to fabricate a two-dimensional (2D) crystal of protein molecules has been developed. The method enables us to control both the position of nucleation and the direction of the crystal growth. The crystal obtained using a protein molecule, ferritin, was found to be composed of a number of densely packed single crystal domains with an unprecedentedly large size of approximately 100 microm(2). This method also reveals characteristic behavior of the spatiotemporal evolution of the crystal; for example, "fusion" of the crystal domains, which is never observed in an ordinary crystal composed of atoms or ions, was demonstrated. Our approach could have potential in fabricating extraordinarily large and highly ordered nanoparticle arrays of organic or inorganic materials.  相似文献   

20.
CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号