首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of novel hemi-disclike four coordinated distorted square planar Zn(II) Schiff base complexes containing 4-substituted alkoxy chains on the side aromatic ring [Zn (4−CnH2n+1O)2 salophen], n = 14, 16, 18 and salophen = N,N′-4-methyl phenylene bis (salicylideneiminato), have been prepared and their mesogenic, photophysical properties were investigated. The phase behavior of these compounds were characterized by differential scanning calorimetry, polarized optical microscopy and variable temperature PXRD study. The ligands are non-mesogenic but the complexes exhibited an unprecedented 2D-hexagonal columnar mesophase (Colh) in the temperature 175–185 °C range. In the mesophase (Colh), the molecules self assemble in a columnar stack in antiparallel fashion. All λmax of the UV–Vis absorption and photoluminescence band occurred at ca. 291–425 and 504–524 nm, respectively. The ligands are non-emissive, but on coordination with Zn(II), the complexes show intense green emission at room temperature in dichloromethane solution (∼505 nm, Φ = 20%) as well as in solid (∼522 nm, Φ = 9%) at 360 nm excitation. The DFT calculations were performed using Dmol3 program at BLYP/DNP level to obtain the stable electronic structure of the complex. A small LUMO-HOMO band gap (∼2.1 eV), presumably suggests a rather strong electronic correlation among the molecules along the column.  相似文献   

2.
Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal section at 800 °C based on X-ray powder diffraction, metallography, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques on about 120 alloys, which were prepared by various methods employing arc-melting under argon or powder reaction sintering. Nineteen ternary compounds were observed. Atom order in the crystal structures of τ18-Ce5(Pt,Si)4 (Pnma; a=0.77223(3) nm, b=1.53279(8) nm c=0.80054(5) nm), τ3-Ce2Pt7Si4 (Pnma; a=1.96335(8) nm, b=0.40361(4) nm, c=1.12240(6) nm) and τ10-CePtSi2 (Cmcm; a=0.42943(2) nm, b=1.67357(5) nm, c=0.42372(2) nm) was determined by direct methods from X-ray single-crystal CCD data and found to be isotypic with the Sm5Ge4-type, the Ce2Pt7Ge4-type and the CeNiSi2-type, respectively. Rietveld refinements established the atom arrangement in the structures of Pt3Si (Pt3Ge-type, C2/m, a=0.7724(2) nm, b=0.7767(2) nm, c=0.5390(2) nm, β=133.86(2)°), τ16-Ce3Pt5Si (Ce3Pd5Si-type, Imma, a=0.74025(8) nm, b=1.2951(2) nm, c=0.7508(1) nm) and τ17-Ce3PtSi3 (Ba3Al2Ge2-type, Immm, a=0.41065(5) nm, b=0.43221(5) nm, c=1.8375(3) nm). Phase equilibria in Ce-Pt-Si are characterised by the absence of cerium solubility in platinum silicides. Cerium silicides and cerium platinides, however, dissolve significant amounts of the third component, whereby random substitution of the almost equally sized atom species platinum and silicon is reflected in extended homogeneous regions at constant Ce content such as for τ13-Ce(PtxSi1−x)2, τ6-Ce2Pt3+xSi5−x or τ7-CePt2−xSi2+x.  相似文献   

3.
The green and red upconversion luminescence of Er3+ in lead chloride tellurite glasses excited at 980 nm is investigated. Three intense emission bands centered at 530, 545, and 658 nm corresponding to the transitions 4S3/24I15/2, 2H11/24I15/2 and 4F9/24I15/2, respectively, were simultaneously observed at room temperature. With increasing PbCl2 content, the intensity of green (530 nm) emissions increase slightly, while the green (545 nm) and red (658 nm) emissions increase significantly. The results indicate that PbCl2 has more influence on the green (545 nm) and red (658 nm) emissions than the green (530 nm) emission. The dependence of upconversion intensities on excitation power and possible upconversion mechanisms are discussed and evaluated.  相似文献   

4.
Diol capped γ-Fe2O3 nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5 nm) and 1,5-pentanediol (15 nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673 K) are γ-Fe2O3 and the 773 K-sintered sample is Fe3O4. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to α-Fe2O3 at higher laser power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of γ-Fe2O3 sample with large particle size (15.4 nm) is more than the sample with small particle size (10.2 nm). Fe3O4 having a particle size of 48 nm is however less stable than the smaller γ-Fe2O3 nanoparticles.  相似文献   

5.
Na2[(VIVO)2(ttha)]·8 H2O (ttha = triethylenetetraamine–N,N,N′,N″,N′″,N′″–hexaacetate ion), prepared by treating [VO(H2O)5][(VO)2(ttha)]·4 H2O with Na6(ttha), has been characterized by single crystal X-ray diffraction, infrared spectroscopy, UV–Vis absorption spectroscopy, electron spin resonance spectroscopy, and modeled by density functional theory (DFT). The X-ray structure revealed a distorted octahedral geometry around each vanadium center. The electronic absorption spectrum of [(VO)2(ttha)]2− (aq) features absorptions at ca. 200 nm (ε > 13900 L mol−1 cm−1), 255 nm (ε = 3480 L mol−1 cm−1), 586 nm (ε = 33 L mol−1 cm−1), and 770 nm (ε = 38 L mol−1 cm−1). The time-dependent density functional theory (TDDFT) calculated electronic absorption spectrum was remarkably similar to the actual spectrum, and TDDFT predicts absorption peaks at 297, 330, 458, 656, and 798 nm. TDDFT assigned the peak at 798 nm to be the α spin HOMO → LUMO transition. Hence, the peak at 770 nm in the actual spectrum is most likely the α spin HOMO → LUMO transition. Moreover, the TDDFT calculations revealed that the α spin HOMO and LUMO are partly comprised of d orbitals on both vanadium centers, and the first derivative electron spin resonance spectrum also suggests that the two unpaired electrons in [(VO)2(ttha)]2− are localized near the vanadium centers.  相似文献   

6.
The ground and the lowest-lying triplet excited state geometries, electronic structures, and spectroscopic properties of a novel series of neutral iridium(III) complexes with cyclometalated alkenylquinoline ligands [(C^N)2Ir(acac)] (acac = acetoylacetonate; C^N = 2-[(E)-2-phenyl-1-ethenyl]pyridine (pep) 1; 2-[(E)-2-phenyl-1-ethenyl]quinoline (peq) 2; 1-[(E)-2-phenyl-1-ethenyl]isoquinoline (peiq) 3; 2-[(E)-1-propenyl]pyridine (pp) 4; 2-[(E)-1-fluoro-1-ethenyl]pyridine (fpp) 5) were investigated by DFT and CIS methods. The highest occupied molecular orbital is composed of d(Ir) and π(C^N) orbital, while the lowest unoccupied molecular orbital is dominantly localized on C^N ligand. Under the TD-DFT with PCM model level, the absorption and phosphorescence in CH2Cl2 media were calculated based on the optimized ground and triplet excited state geometries, respectively. The calculated lowest-lying absorptions at 437 nm (1), 481 nm (2), 487 nm (3), 422 nm (4), and 389 nm (5) are attributed to a {[dx2-y2(Ir) + dxz(Ir) + π(C^N)] → [π∗(C^N)]} transition with metal-to-ligand/intra-ligand charge transfer (MLCT/ILCT) characters, and the calculated phosphorescence at 582 nm (1), 607 nm (2), 634 nm (3), 515 nm (4), and 491 nm (5) can be described as originating from the 3{[dx2-y2(Ir) + dxz(Ir) + π (C^N)] [π∗(C^N)]} excited state with the 3MLCT/3ILCT characters. The calculated results revealed that the phosphorescent color of these new Ir(III) complexes can be tuned by changing the π-conjugation effect strength of the C^N ligand.  相似文献   

7.
A high-performance liquid chromatographic method has been developed for the determination in human plasma of the specific serotonin reuptake inhibitor (SSRI) antidepressant paroxetine and its three main metabolites (M1, M2, M3). Fluorescence detection was used, exciting at λ = 294 nm and monitoring emission at λ = 330 nm for paroxetine (λexc = 280 nm, λem = 330 nm for M1 and M2; λexc = 268 nm, λem = 290 nm for M3). Separation was obtained on a reversed-phase C18 column using a mobile phase composed of 66.7% aqueous phosphate at pH 2.5 and 33.3% acetonitrile. Imipramine (λexc = 252 nm, λem = 390 nm) was used as the internal standard. A careful pre-treatment of plasma samples was developed, using solid-phase extraction with C8 cartridges (50 mg, 1 mL). The calibration curves were linear over a working range of 2.5-100 ng mL−1 for paroxetine and of 5-100 ng mL−1 for all metabolites. The limit of detection (LOD) was 1.2 ng mL−1 for PRX and 2.0 ng mL−1 for the metabolites. The method was applied with success to plasma samples from depressed patients undergoing treatment with paroxetine. Hence, the method seems to be suitable for the therapeutic drug monitoring of paroxetine and its main metabolites in depressed patients’ plasma.  相似文献   

8.
Oxyfluoride glasses with a small amount of NiO are prepared using a conventional melt quenching technique, and the spatially selected crystallization of LaF3 and CaF2 crystals is induced on the glass surface by irradiations of continuous wave lasers with a wavelength of λ=1064 or 1080 nm. Dots and lines including LaF3 crystals are patterned by heat-assisted (300 °C) laser irradiations (λ=1064 nm) with a power of P=1 W and an irradiation time of 10 s for dots and a scanning speed of S=5 μm/s for lines. Lines consisting of CaF2 crystals are also patterned in an ErF3-doped oxyfluoride glass by laser irradiations (λ=1080 nm) with a power of P=1.7 W and a scanning speed of S=2 μm/s, and the incorporation of Er3+ ions into CaF2 crystals is confirmed from micro-photoluminescence spectrum measurements. It is proposed that the lines patterned by laser irradiations in this study are consisted of the composite of LaF3 or CaF2 nanocrystals and SiO2-based oxide glassy phase. It is demonstrated that a combination of Ni2+-dopings and laser irradiations is effective in spatially selected local crystallizations of fluorides in oxyfluoride glasses.  相似文献   

9.
Nanowires of an iodine containing Pb-Sb-sulfosalt have been synthesized by chemical vapor transport. Their structure was studied using high-resolution transmission electron microscopy and X-ray powder diffraction. The lattice parameters show values equal to a=4.9801(4) nm, b=0.41132(8) nm (with two-fold superstructure), c=2.1989(1) nm and β=99.918(6)°. These parameters and the results of a multislice simulation are in good agreement with the mineral pillaite, Cu0.10Pb9.16Sb9.84S22.94Cl1.06O0.5 (space group C2/m, a=4.949(1) nm, b=0.41259(8) nm, c=2.1828(4) nm, and β=99.62(3)°). Microprobe and EDX analyses yielded a chemical composition of Cu0.507(5)Pb8.73(9)Sb8.15(8)I1.6S20.0(2) which is close to natural pillaite but contains no oxygen and iodine instead of chlorine. The structure of the investigated material is based on chains of M-S polyhedra (M=Pb or Sb) typical for the architecture of sulfosalts implying iodine atoms in trigonal prismatic coordination with Pb atoms from the M-S polyhedra of neighboring chains. The [010] superstructure of the specimen was found to be unstable under electron beam irradiation with a rapid decrease of the b lattice parameter from 0.8 to 0.4 nm within 5 min.  相似文献   

10.
New wormhole-like mesoporous TiO2 material has been synthesized through a convenient sol-gel method in the presence of a Schiff base secondary amine hexadecyl-2-pyrrole-methylamine (HPMA) containing chelating donor sites as template or structure directing agent (SDA). SDA molecules can be easily removed from the composite to generate mesoporosity and upon removal of the SDA molecule, this mesoporous TiO2 material showed very high surface area (480 ± 10 m2/g) with an average pore diameter of 2.57 ± 0.05 nm. When Rose Bengal dye is entrapped inside the nanopores of this material, it showed a drastic enhancement (ca. 40-folds) in the photoconductivity vis-à-vis mesoporous TiO2 alone under white light illumination.  相似文献   

11.
A high-performance fluorosensor for pH measurements between 6 and 9   总被引:1,自引:0,他引:1  
Aron Hakonen  Stefan Hulth 《Talanta》2010,80(5):1964-321
This study presents a high-performance ratiometric pH optode based on the fluorophore 6,8-dihydroxypyrene-1,3-disulfonic acid (DHPDS). The two pH-sensitive terminal hydroxy groups of DHPDS facilitated dual excitation/dual emission (F1: λ1,ex = 420 nm, λ1,em = 462 nm; F2: λ2,ex = 470 nm, λ2,em = 498 nm) properties for ratiometric (RF1,F2 = F1/F2) normalization of sensor signal. The sensor demonstrated an exponentially decreasing ratiometric response with increasing pH, with a linear correlation (R2 = 0.9936) between 10log(RF1,F2) and pH within the pH interval 6-9. Precision determined as the IUPAC pooled standard deviation for the pH values 6.00, 7.01 and 9.01, was 0.0057 pH units for the fluorosensor and 0.0054 for a commercially available pH electrode used for comparison. Between the end-points of calibration at pH 7.01, the precision of the sensor was 0.0037 pH units. Effects from changes in ionic strength (Itot, 10-700 mM) were more pronounced for the electrode, with a linear (R2 = 0.9976) increase in response (δE/δpH) with increasing Itot. The DHPDS-based fluorosensor, however, retained sensitivity (δ10log(RF1,F2)/δpH = 0.8024 ± 0.0145), though with an overall increase in ratiometric signal with increasing Itot. The preserved sensitivity despite changes in ionic strength was possibly a consequence from the dual photo-acidic properties of DHPDS. Analytical characteristics of immobilized DHPDS therefore not only facilitated high-performance measurements over a wide pH range, but also opened for straightforward simultaneous measurements of pH and ionic strength.  相似文献   

12.
In this paper, to improve properties of Poly(ethylene terephthalate) (PET) in thermal stability and barrier to water, the films of PET, PET with micronmeter Silica/Polystyrene (SiO2/PS) composites (SPET) and PET with nano-SiO2/PS composites (SNPET) are prepared and their water absorption and thermal stable behaviors are investigated.In the samples, silica load is optimized as 2 wt%, at which silica not only disperses well but also forms the tough morphology in PET as investigated by SEM. The nanoeffect and thermal degradation behaviors of SNPET are firstly presented.The water absorption experiments for the samples show that the maximum absorption water weight percentage (C) and the pseudo-diffusion coefficient (D) of water reduce with SiO2 particle size varying from 440 nm to 40 nm, and the barrier property to water of SNPET is superior to those of pure PET and SPET. At the minimum silica size of 40 nm, the C and D of SNPET approach the minimum values that are 0.946% and 7.075 × 10−13 m2 s−1, respectively. Fixing SiO2 size at 40 nm, with un-modified SiO2 and modified SiO2, the core-shell SiO2/PS nanocomposite particles are more effective on keeping PET from absorbing water. With the increase in nano-SiO2 load, the C and D of SNPET films reduce, proving that the nano-SiO2 particles can inhibit water absorption. When amorphous SNPET films are annealed at 130 °C, their C and D quickly decrease with the increase in annealing time, stating that the crystallized SNPET also retards the water absorption or diffusion in PET. Under oversaturated oxygen atmosphere, the C and D of amorphous PET and SNPET, and crystallized SNPET samples are higher than those of corresponding samples without flowing oxygen, showing that oxygen promotes the films to absorb water.TGA results show that SNPET keeps similar thermal degradation behavior under the conditions of with and without both water and oxygen. But SNPET is more thermally stable than PET.  相似文献   

13.
Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ = 27 nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ = 120 nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ = 27 nm) and 368 nm (Δλ = 120 nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700 ng mL−1 (for gemfibrozil) and 20-140 ng mL−1 (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258 nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at (λEm2=302 nm of gemfibrozil) and (λEm2=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63 ng mL−1 for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery.  相似文献   

14.
2-Iodobenzothiazole was reacted with tributyl(pentafluorobutadienyl)tin in the Stille reaction conditions to give 2-pentafluorobutadienylbenzothiazole 1. The quaternary salt of 1 via interaction with 2-fluoromethylbenzothiazole methylene base, obtained in situ, forms two cyanine dyes 8 and 9 as a result of nucleophilic attack of two different positions of perfluorobutadiene chain. The pure 2-fluoromethylbenzothiazole methylene base (in a dimer form) was obtained by deprotonation of the corresponding salt by NaH and on reacting with 1 forms the dye base 11 that underwent electrocyclization and subsequent HF addition to form the cyclohexadiene 12 identified by X-ray analysis data. Upon quaternization and HF abstraction by toluidine the recyclization occurred and dye 8 - the first representative of dicarbothiacyanine dyes with perfluorinated polymethine chain - was obtained. It has λmax = 691 nm, that is 41 nm more than in non fluorinated dye, vinylene shift is equal to 111 nm.  相似文献   

15.
The electronic spectra of solid MgCp2 (Cp = cyclopentadienyl) show features which indicate the presence of intramolecular interligand interactions. The fluorescence of MgCp2 (λmax = 363 nm) undergoes a considerable Stokes shift which is apparently caused by a bonding attraction between both Cp rings in the excited state. An additional phosphorescence of the (Cp)2 fragment (λmax = 535 nm) appears at 77 K.  相似文献   

16.
K.K. Upadhyay  Ajit Kumar 《Talanta》2010,82(2):845-6813
An interference-free naked-eye recognition of Al3+ at its micromolar level has been done in 5% aqueous DMSO solution employing a Schiff base 5-[(2-hydroxy-5-nitro-benzylidene)-amino]-1H-pyrimidine-2,4-dione (receptor 1) which is an intramolecular charge transfer (ICT) probe. The pyrimidine and nitrophenyl groups serve as electron rich (donor) and deficient (acceptor) pockets in receptor 1 exhibiting a broad ICT band at 434 nm (olive green). The concomitant additions of Al3+ as its chloride salt to the 5 × 10−5 M aqueous DMSO solution of the receptor 1 lead hypsochromic shifting of its ICT band to 395 nm (colorless). The same ICT band undergoes a marginal bathochromic shifting (6 nm) along with a hyperchromic shift on separate additions of a basic anion like F, CH3COO and H2PO4 to the receptor 1 and faced almost similar fate on concomitant additions of Al3+ as mentioned above.  相似文献   

17.
The syntheses of two new ligands and five new heteroleptic cyclometallated Ir(III) complexes are reported. The ligands are based upon a functionalised anthra[1,2-d]imidazole-6,11-dione core giving LH1−3 incorporating a pendant pyridine, quinoline or thiophene unit respectively. Neutrally charged, octahedral complexes [Ir(ppy)2(L1−3)] are chelated by two cyclometallated phenylpyridine (ppy) ligands and a third, ancillary deprotonated ligand L1−3, whilst cationic analogues could only be isolated for [Ir(ppy)2(LH1−2)][PF6]. X-ray crystal structures for [Ir(ppy)2(L1)], [Ir(ppy)2(LH1)][PF6] and [Ir(ppy)2(L2)] showed the complexes adopt a distorted octahedral coordination geometry, with the anthra[1,2-d]imidazole-6,11-dione ligands coordinating in a bidentate fashion. Preliminary DFT calculations revealed that for the complexes of LH1 and LH2 the LUMO is exclusively localized on the ancillary ligand, whereas the nature of the HOMO depends on the protonation state of the ancillary ligand, often being composed of both Ir(III) and phenylpyridine character. UV-vis. and luminescence data showed that the ligands absorb into the visible region ca. 400 nm and emit ca. 560 nm, both of which are attributed to an intra-ligand CT transition within the anthra[1,2-d]imidazole-6,11-dione core. The complexes display absorption bands attributed to overlapping ligand-centred and 1MLCT-type electronic transitions, whilst only [Ir(ppy)2(L2)] appeared to possess typical 3MLCT behaviour (λem = 616 nm; τ = 96 ns in aerated MeCN). The remaining complexes were generally visibly emissive (λem ≈ 560-570 nm; τ < 10 ns in aerated MeCN) with very oxygen-sensitive lifetimes more indicative of ligand-centred processes.  相似文献   

18.
The crystal structure of the δ clathrate form of syndiotactic polystyrene (s-PS) containing CHCl3, a molecule having a pivotal role in respect to the co-crystalline phases formation of this polymer, has been determined through X-ray diffraction data and molecular mechanics calculations. Analogously to all the other δ clathrate forms of s-PS, this structure presents a monoclinic unit cell (cell constants a = 1.77 nm, b = 1.32 nm, c = 0.78 nm and γ = 121.5°) in which the s(2/1)2 polymer helices and guest molecules are packed according the space group P21/a. At variance with all the other δ clathrate forms of s-PS whose crystal structure has been reported in the literature, probably due to the not planar shape of the chloroform guest molecule, in this structure guest molecules occupy each centrosymmetric cavity in a very low efficient way, giving rise to a disorder in the positioning of the guest molecules along the b + a/2 direction of the unit cell. A comparison with the ε type clathrate with the same guest, for which some preliminary results have been reported too, is also presented.  相似文献   

19.
Diphenyl-1,3,4-oxadiazole (DPO) crystallization experiments from solutions clearly reveal the polymorphism of the substance. Besides the formerly known centrosymmetric monoclinic structure with space group P21/c (DPO I) a new monoclinic structure with the non-centrosymmetric space group Cc is found (DPO II): a=2.4134(4) nm, b=2.4099(3)  nm, c=1.2879(2) nm, β=110.048(3)°, and V=7.0363(17) nm3. The asymmetric unit contains six independent molecules in a complex packing motif. A re-determination of the crystal structure of DPO I at room temperature gives lattice parameters a=0.51885(6) nm, b=1.8078(2) nm, c=1.21435(14) nm, β=93.193(3)°, and V=1.1373(2) nm3. X-ray measurements at 363 K show a significant increase of the unit cell volume by 1.6%. Differences between both structures concerning morphology and characteristic Raman bands are outlined in detail. DSC investigations show an irreversible transition from DPO I to DPO II at 97 °C. DPO II does not show any transition in the temperature range up to the melting point at 141 °C. The non-centrosymmetric DPO II structure shows triboluminescence.  相似文献   

20.
A normal spectrophotometric and a stopped-flow (SF) spectrofluorimetric method have been developed and optimized for the determination of alendronic acid (ALD) in its pharmaceutical formulations. Both methods are automated using the sequential injection analysis (SIA) principle. The spectrophotometric assay is based on the reaction of the analyte with Cu(II) ions in acidic medium to form an UV-absorbing derivative (λmax = 240 nm). The SF spectrofluorimetric method is based on the reaction of ALD with o-phthalaldehyde (OPA) in the presence of 2-mercaptoethanol at basic medium (λex = 340 nm/λem = 455 nm). Linear calibration curves were obtained in the range 1.0-60.0 mg l−1 ALD for the UV method, and in the range 0.13-10.0 mg l−1 ALD for the SF spectrofluorimetric one. The sampling rates were 60 and 30 h−1, respectively. The developed assays are critically compared and their advantages are discussed. Both methods were applied to the analysis of an ALD containing pharmaceutical formulation with satisfactory accuracy and precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号