首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Electrochemical characteristics of single cell performances at various humidity conditions and constant temperatures of 40?100 °C using membrane electrode assemblies (MEAs) were studied. The MEAs consist of alternative proton-conducting hybrid membrane electrolyte and noble Pt/C catalyst for the H2/O2 proton exchange membrane fuel cells (PEMFCs). The function of humidity on the cell performances was investigated at larger current density values of 501 mA cm?2 and constant cell temperatures of 80 and 90 °C and the relative humidity of 100 %. The power density value of 400 mW cm?2 was obtained when the same MEA at similar operating conditions was used. The effects of temperature on the single cell performances were investigated at various temperature ranges of 40–100 °C and constant relative humidity of 50, 70, and 100 %. The maximum current density and power density values of about 600 mA cm?2 and 160 mW cm?2, respectively, were obtained at 90 °C with 100 % RH. The results were compared with the reported results of Nafion membrane and similar hybrid membranes operating at low temperatures for H2/O2 fuel cells. Finally, the results provided an alternative proton-conducting electrolyte as promising candidate for low/intermediate temperature operating H2/O2 fuel cells.  相似文献   

2.
The effect of polypyrrole (PPy) on the polyvinyl alcohol (PVA)-potassium iodide (KI)-iodine (I2) polymer electrolytes has been investigated and optimized to use in a dye-sensitized solar cell (DSSC). The different weight ratios of PVA: PPy (93: 2, 91: 4, 89: 6, 87: 8, and 85: 10 wt%) polymer electrolytes (PE) were prepared by solution casting. Structural, complex formation and surface roughness of the prepared electrolytes was confirmed by X-ray diffraction, FTIR, and atomic force microscopy (AFM) respectively. Conductivity plots of all polymer films showed increasing trend with temperature and concentration of PPy. The activation energy of the optimized system found to be 0.871 kJ mol?1. UV-visible spectrum was adopted to characterize the absorption spectra of the material revealed that increase in the absorbance with increasing PPy content and shifting the absorbance maximum towards lower energy. The indirect band gap decreased from 3.78 to 2.14 eV and direct band gap decreased from 3.88 to 2.71 eV. The EIS analyses revealed the lower charge transfer resistance of 3.029 Ω cm2 at the interface between CE and PE. The excellent performance was observed in the fabricated DSSCs using PVA (85%)/PPy (10%)/KI (5%)/I2 polymer electrolyte with a short-circuit current density of 11.071 mA cm?2, open-circuit voltage of 0.644 V, fill factor of 0.575, and photovoltaic conversion efficiency of 4.09% under the light intensity of 100 mW cm?2. Hence, the PPy content in polymer electrolyte influences the remarkable performance of low-cost DSSC.  相似文献   

3.
Nickel-substituted layered perovskite PrBaCo2 ? x Ni x O5 + δ (PBCN) powders with various proportions of nickel (x?=?0, 0.1, 0.2, and 0.3, abbreviated as PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively) are investigated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) based on the yttria-stabilized zirconia (YSZ) electrolyte. It is found that PBCN-1 has the highest electrical conductivity of 1,397 S cm?1 at 400 °C. Substitution of Co by Ni decreases the thermal expansion coefficient (TEC) clearly. The average TEC at the temperature range of 35–900 °C decreases from 22.8?×?10?6 K?1 for PBCN-0 to 18.9?×?10?6 K?1 for PBCN-3. The polarization resistances of PBCN samples on YSZ electrolyte at 800 °C are 0.053, 0.048, 0.052, and 0.042 Ω cm2 for PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively. The single fuel cell with the configuration of PBCN-3/YSZ/Pt delivers the highest power densities of 100, 185, 360, 495, and 660 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively.  相似文献   

4.
The behavior of p-methoxybenzoyldiphenylphosphine oxide, previously synthesized, as a photoinitiator for the polymerization of diacrylate monomer, in the presence of 3% (w/w) tertiary amine (triethyl amine) as synergist additive, was studied. The influence of temperature in the range 30–90°C at 3% (w/w) photoinitiator concentration and the influence of the photoinitiator concentration in the range 0.5–3.5% (w/w) at 30°C was investigated by differential scanning photocalorimetry (photo-DSC). In all experiments the photopolymerization was performed at constant light intensity (3 mW cm−2). The maximum conversion was obtained at temperature of 90°C at 3% (w/w) photoinitiator concentration and 3% (w/w) triethyl amine. The optimal concentration of photoinitiator to obtain maximum conversion was 3% (w/w), at 30°C. No thermal polymerization occurred at higher temperature.  相似文献   

5.
Redox cycling of Ni-based anode induces cell degradation which limits the cell's lifetime during solid oxide fuel cell operation. In the present study, the redox testing of electrolyte-supported cells has been investigated with TiO2-added NiO–YSZ anode matrix. Button cells were fabricated by die-pressing YSZ powder as electrolyte, and onto which NiO–YSZ or NiO–TiO2–YSZ anode and LSM–YSZ composite cathode were painted. The electrochemical performance and stability have been evaluated by measuring current–voltage characteristics followed by impedance spectroscopy after each redox cycling. Anode matrices before and after cell operation have been characterized by X-ray diffraction (XRD), elemental dispersive X-ray (EDX), and scanning electron microscopy (SEM). During cell operation the peak power density decreases from 111 mW cm?2 (239 mA cm?2) to 84 mW cm?2 (188 mA cm?2) between 23 and 128 h with five redox cycles for cell having NiO–YSZ (40:60) anode. But for cell with NiO–TiO2–YSZ (30:10:60), the anode peak power density was constant and stable around 85 mW cm?2 (194 mA cm?2) throughout the cell run of 130 h and five redox cycles. No loss in the open circuit voltage was observed. SEM and XRD studies of NiO–TiO2–YSZ (30:10:60) anodes revealed formation of ZrTiO4, which may be responsible for inhibition of Ni coarsening leading to stable cell performance.  相似文献   

6.
Photopolymerization of thick pigmented systems still remains challenging due to the light screening effect of the pigments. Here, we present a facile method based on upconversion nanoparticles (UCNPs)‐assisted photochemistry to achieve efficient photopolymerization and improved curing depth of pigmented systems. Under a 980‐nm laser irradiation, UCNPs are able to convert NIR light into UV and visible light to activate photoinitiators for the initiation of polymerization. Influencing factors on photopolymerization were systematically investigated. With optimal parameters, 25.5 mm of photopolymerization depth combined with 70% of maximal double bond conversion was obtained. The peak temperature of 120.4 °C during UCNPs‐assisted photopolymerization is comparable with or lower than that of some reported frontal photopolymerization applied to prepare functional composite polymeric materials. Both indentation hardness and reduced modulus of the photocured materials using UCNPs as internal lamps were higher than those of the reference cured under traditional blue LED light. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 994–1002  相似文献   

7.
A series of catalysts (g-C3N4@MWCNTs/Mn3O4) were prepared from g-C3N4, MWCNTs, and Mn3O4 for oxygen reduction reaction (ORR) in zinc–air batteries. From the half-cell tests, the loading of 35 % Mn3O4 (sample GMM35) presents an excellent activity toward ORR in alkaline condition. Rotating ring-disk electrode (RRDE) studies reveal that 3.6~3.8 electrons are transferred with a H2O2 yield of 11.4 % at ?0.4 V. Meanwhile, the GMM35 nanocomposite exhibits the same durability as commercial 20 wt% Pt/C in alkaline condition, but it shows lower peak power density (192.4 mW cm?2 at 229.1 mA cm?2) and cell voltage than those with a commercial Pt/C catalyst (260.9 mW cm?2 at 285.4 mA cm?2).  相似文献   

8.
La4Ni3O10 oxide was synthesized as a cathode material for intermediate-temperature solid oxide fuel cells by a facile sol–gel method using a nonionic surfactant (EO)106(PO)70(EO)106 tri-block copolymer (F127) as the chelating agent. The crystal structure, electrical conductivity, and electrochemical properties of La4Ni3O10 were investigated by X-ray diffraction, DC four-probe method, electrochemical impedance spectra, and I–V measurements. The La4Ni3O10 cathode showed a significantly low polarization resistance (0.26 Ω cm2) and cathodic overpotential value (0.037 V at the current density of 0.1 A cm?2) at 750 °C. The results measured suggest that the diffusion process was the rate-limiting step for the oxygen reduction reaction. The La4Ni3O10 cathode revealed a high exchange current density value of 62.4 mA cm?2 at 750 °C. Furthermore, an anode-supported single cell with La4Ni3O10 cathode was fabricated and tested from 650 to 800 °C with humidified hydrogen (~3 vol% H2O) as the fuel and the static air as the oxidant. The maximum power density of 900 mW cm?2 was achieved at 750 °C.  相似文献   

9.
Quasi-solid-state electrolytes were fabricated with mesoporous silica SBA-15 as a framework material. Ionic conductivity measurements revealed that SBA-15 can enhance the conductivity of the quasi-solid-state electrolyte. The diffusion coefficients of polyiodide ions such as Ⅰ3ˉ and Ⅰ5ˉ which were confirmed by Raman spectroscopic measurement, were about twice larger than that of I-. The optimized photoenergy conversion efficiency of dye-sensitized solar cells (DSSC) with the quasi-solid-state electrolyte was 4.3% under AM 1.5 irradiation at 75 mW·cm^-2 light intensity.  相似文献   

10.
Absolute rate constants for the reaction of S(3P) with ethylene were measured over an ethylene concentration range of 7, a total pressure of 50 to 400 torr, and a flash intensity range of 10. At 298°K, the bimolecular rate constant was found to be invariant over this range of variables and had a measured value of 4.96 × 10?13 cm3 molec?1 s?1. Over the temperature range of 218° to 442°K, the rate data could be fit to a simple Arrhenius equation of the form Units are cm3 molec?1 s?1. The dependence of the measured value of k1 on the concentration of the reaction product ethylene episulfide is discussed.  相似文献   

11.
Pyrolysis of pine needles was carried out in a semi-batch reactor. The effects of pyrolysis parameters such as temperature (350–650 °C), heating rate (10 and 50 °C min?1), nitrogen flow rate (50–200 cm3 min?1) and biomass particle size (0.25–1.7 mm) were examined on products yield. Maximum bio-oil yield of 43.76% was obtained at pyrolysis temperature of 550 °C with a heating rate of 50 °C min?1, nitrogen flow rate of 100 cm3 min?1 for biomass particle size of 0.6 < d p < 1 mm. The characterization of pyrolysis products (bio-oil, bio-char) has been made through different instrumental methods like Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy (1H NMR), X-ray powder diffraction, field emission scanning electron microscope and Brunauer–Emmett–Teller surface area analysis. The empirical formula of the bio-oil and bio-char was found as CH1.47O0.36N0.005 and CH0.56O0.28N0.013 with heating value of 26.25 and 25.50 MJ kg?1, respectively. Results show that bio-oil can be potentially valuable as a renewable fuel after upgrading and can be used as a feedstock for valuable chemicals production. The properties of bio-char reveal that it can be used as solid fuels, as a cheap adsorbent and as a feedstock for activated carbon production.  相似文献   

12.
Thermogravimetry (TG) and differential scanning calorimetry (DSC) are used in pharmaceutical studies for characterization of drugs, purity, compatibility of formulations, identification of polymorphism, evaluation of stability, and thermal decomposition of drugs and pharmaceutical formulations. Hydroquinone (HQ) and products containing HQ have been widely used as depigmentation agents for lightening the skin. Retinoids are compounds that have the basic core structure of vitamin A and its oxidized metabolites, or synthetic compounds that share similar mechanisms of action as naturally occurring retinoids. Depigmentants and excipients were analyzed by TG and DSC. The dynamic thermogravimetric curves were obtained on a SHIMADZU thermobalance, model DTG-60, using an alumina crucible, at the heating rate of 10 °C min?1, in the temperature range of 25–900 °C, under an atmosphere of nitrogen at 50 mL min?1. The sample's mass was 10 ± 0.05 mg. The DSC curves were obtained using Shimadzu calorimeter, model DSC-60, using aluminum crucible, at the heating rate of 10 °C min?1, in the temperature range of 25–400 °C. The thermogravimetric and calorimetric curves were analyzed using TASYS software SHIMADZU. In this study were found the interaction between retinoic acid (RA) and the following excipients: cetyl alcohol(CA), cetostearyl alcohol (CTA), glycerin(GLY), and dipropylene glycol (DPG), and that between HQ and the excipient, DPG. Therefore, additional studies are necessary to evaluate final formulations. Thermal analysis is an effective and reliable technique that can be used in the control of raw materials and pharmaceutical products, and for evaluating their employment potential in the development and characterization of products.  相似文献   

13.
ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm?1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g?1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol?1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.  相似文献   

14.
We have reported the semi conducting and photoelectrochemical properties of SrWO4 prepared by chemical route. The phase purity is confirmed by X-ray diffraction and the oxide is characterized by scanning electron microscopy, diffuse reflectance, and electrochemical impedance spectroscopy. SrWO4 crystallizes in the scheelite structure with an average crystallite size of 378 ± 6 nm. The Raman spectrum gives an intense peak at 920 cm?1 assigned to A g mode while the infrared analysis confirms the hexagonal coordination of tungsten. The UV-visible spectroscopy shows an indirect optical transition at 2.60 eV. SrWO4 exhibits n-type conduction by oxygen deficiency, confirmed by the chrono-amperometry and the intensity potential J(E) curve shows a small hysteresis. The Mott-Schottky plot gives electrons density of 5.72 × 1018 cm?3 and a flat band potential of 0.27 VSCE, indicating that the conduction band derives mainly from W6+: 6s orbital. The electrochemical impedance spectroscopy (EIS), measured in the range (1–105 Hz), shows the predominance of the bulk contribution with a dark impedance of 38 kΩ cm2. As application, the ibuprofen is degraded by electrocatalysis on SrWO4 with a conversion rate of 42%. An improvement up to 77% has been obtained by electrophotocatalysis under UV light; the conversion follows a first order kinetic with a rate constant of 2.32 × 10?4 min?1.  相似文献   

15.
In the present work, kinetics of thermal decomposition of 2,2-dinitropropyl acrylate–styrene copolymer (DNPA/St) and 2,2-dinitropropyl acrylate–vinyl acetate copolymer (DNPA/VAc) was investigated by differential scanning calorimetry (DSC). The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of the copolymer was verified. The results showed that, as the heating rate was increased, decomposition temperature of the copolymer was increased. Also, the kinetic parameters such as activation energy and frequency factor of the copolymer were obtained from the DSC data by the isoconversional methods proposed by Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). Average activation energy obtained by KAS and FWO methods for the thermal decomposition reaction of DNPA/St and DNPA/VAc are 157.38 ± 0.27 and 147.67 ± 0.57 kJ mol?1, respectively. The rate constants for thermal decomposition calculated from the activation parameters showed the structural dependency. The relative stability of two copolymers under 50 °C was in this order: DNPA/St > DNPA/VAc. The results of thermogravimetry (TG) analysis revealed that the main mass changes for DNPA/St and DNPA/VAc occurred in the temperature ranges of 200–270 °C. The DSC-FTIR analysis of DNPA/St indicates that the band intensity of nitro and other groups increased haphazardly from 230 °C due to thermal decomposition.  相似文献   

16.
High-performance counter electrodes for dye-sensitized solar cells (DSSCs) are fabricated with platinum-nickel oxide (Pt-NiO) nanosheets as catalytic materials. Firstly, the Pt-Ni nanosheets are synthesized via galvanic replacement reaction between pre-synthesized Ni nanosheets and an aqueous H2PtCl6 solution. Secondly, after thermal treatment in air, the Pt-Ni alloys are turned to Pt-NiO nanosheets. The related data of cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization reveal that Pt-NiO counter electrodes show highly catalytic activity and low charge transfer resistance. The DSSC with Pt-NiO counter electrode exhibits power conversion efficiency (PCE) of 8.40 %, which is lower than that of the DSSC containing commercial available Pt counter electrode (9.15 %) under full sunlight illumination (100 mW cm?2, AM1.5G). However, owing to the extremely high transparency of Pt-NiO counter electrode, when putting an Ag mirror behind the back side of the DSSC, the reflected light can bring great enhanced PCE (11.27 %).  相似文献   

17.
In this work, we have synthesized Zinc oxide (ZnO) tripods and used its thin film as photoanode in dye-sensitized solar cells. SEM micrographs of the as-prepared sample of ZnO confirmed tripod-like morphology consisting of three cylindrical arms with well-defined ends, joined at a common core. The prepared sample of ZnO tripods was further characterized by EDX, XRD, UV-VIS, and FTIR. The dye N719-sensitized solar cell fabricated with photoanode of ZnO prepared in this work provided the open-circuit photo voltage (V oc)?=?0.558 V, short-circuit photocurrent (J sc)?=?6.368 mA?cm-2, fill factor (FF)?=?0.50, and total conversion efficiency (η)?=?0.88 % under full light illumination (intensity 200 mW?cm?2). When cell was illuminated by visible light (150 mW/cm2), V oc?=?0.546 V, J sc?=?4.437 mA/cm2, FF?=?0.54, and η?=?0.88 % were obtained.  相似文献   

18.
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm?1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm?1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm?1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN.  相似文献   

19.
Eucalyptus wood can be utilized as a biomass feedstock for conversion to bio-oil using a pyrolysis process. Eucalyptus wood samples were initially pyrolyzed on a laboratory-scale pyrolysis system at different values in the ranges of 300–800 °C and 0.050–0.300 L min?1 to determine the effects of operation temperature and N2 flow rate, respectively, on the yields of products. Then, the bio-oil in the highest yield (wB = 44.37 %), which was obtained at pyrolysis final temperature (450 °C), heating rate (35 °C min?1), particle size (850 μm), and sweeping flow rate (0.200 L min?1), was characterized by Fourier transform infra-red spectroscopy, gas chromatography/mass spectrometry and column chromatography. Subsequently, it was shown that the operating temperature and N2 gas flow rate parameters affected the product yields. Also, some important physico-chemical properties of the pyrolytic oil obtained in high yield were determined as a calorific value of 37.85 MJ kg?1, an empirical formula of CH1.651O0.105N0.042S0.001, a rich chemical content containing many different chemical groups, a density of 981.48 kg m?3, and a viscosity of 61.24 mm2 s?1. Based on the determined properties of the pyrolytic oil, it was concluded that the use of pyrolytic oil derived from Eucalyptus wood may be useful for the production of alternative liquid fuels and fine chemicals after the necessary improvements.  相似文献   

20.
Three novel liquid crystalline methacrylates have been synthesized and characterized to be tested as comonomers in light‐curing dental resin‐based composites. The selected formulations consist of an alkylammonium or cholesteryl urethane methacrylate and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxypropyl)phenyl]propane (BisGMA) or a BisGMA derivate modified with urethane methacrylate groups, further diluted with triethyleneglycol dimethacrylate (TEGDMA) and reinforced with 70% filler (zirconium silicate nanopowder, silanized filler). This study addresses the relationships between the LC monomer structure, photopolymerization rates (by differential scanning photo calorimetry), and specific properties of the dental resin composites (volumetric shrinkage, water sorption, water solubility, and hydrophobicity). The investigation of LC properties by differential scanning calorimetry and polarizing microscopy indicated that the LC mesophase is stable to room temperature (cationic monomers) or at 40 °C (cholesteryl methacrylate). It was found that the polymerization rate for LC urethane methacrylates used in combination with BisGMA/TEGDMA (0.122–0.136 s?1) is higher than that of the mesogenic monomers alone (0.085–0.107 s?1). The structures of the urethane monomers and, consequently, the viscosity of the comonomer mixture influence both the rate and the degree of conversion (44.8–67.5 %) of the photopolymerization process. Polymerization shrinkage measured by pycnometry showed lower values for LC monomers (3.25–3.43 vol %) comparatively with the monomer mixture (5.19–6.65 vol %). Preliminarily, the effect of ammonium groups from two resin composites incorporating alkylammonium structures (4.5 wt %) was tested on Streptococcus mutans, and distinct zone of inhibition was observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号