首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between the flavonoid hesperidin and bovine serum albumin (BSA) was investigated by fluorescence and UV/Vis absorption spectroscopy. The results revealed that hesperidin caused the fluorescence quenching of BSA through a static quenching procedure. The hydrophobic and electrostatic interactions play a major role in stabilizing the complex. The binding site number n, and apparent binding constant KA, corresponding thermodynamic parameters ΔGo, ΔHo, ΔSo at different temperatures were calculated. The distance r between donor (BSA) and acceptor (hesperidin) was obtained according to fluorescence resonance energy transfer. The effect of Cu2+, Zn2+, Ni2+, Co2+, and Mn2+ on the binding constants between hesperidin and BSA were studied. The effect of hesperidin on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy and UV/Vis absorption spectroscopy.  相似文献   

2.
The fluorescence and ultraviolet spectroscopies were explored to study the interaction between edaravone (EDA) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results show that the fluorescence quenching mechanism between EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites, and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between EDA and BSA was calculated to be 3.10 nm. The effect of EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. In addition, the effects of some common metal ions Mg2+, Ca2+, Cu2+, and Ni2+ on the binding constant between EDA and BSA were examined.  相似文献   

3.
Prulifloxacin is a kind of new oral taking antibiotic of fluoroquinolone. Conjugation reaction of prulifloxacin with trypsin in Britton-Robinson buffer solution of pH 7.96 was analyzed by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence of trypsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. Negative values ΔG0 for the formation of prulifloxacin-trypsin complex implied that both hydrogen bonds and hydrophobic interactions might play a significant role in prulifloxacin binding to trypsin. The binding distance deduced from the efficiency of energy transfer was 0.84 nm for prulifloxacin-trypsin. Furthermore, association constants and binding mechanism were successfully derived from the fluorescence spectra. UV-vis detections supported a change in the secondary structure of proteins caused by the interaction of prulifloxacin with trypsin.  相似文献   

4.
In this paper, interaction of Schiff base and its metal complexes carrying naphthalene ring in the structure with bovine serum albumin (BSA) were investigated using UV-vis absorption, fluorescence spectroscopies and molecular docking methods. The effect on the binding mechanism and properties of these compounds containing metal-free, iron and copper ions were also investigated. The fluorescence spectroscopy results showed that fluorescence intensity of BSA in the presence of different concentration of ligands was decreased through a static quenching mechanism. Binding constants (KSV, Kbin and Ka) and thermodynamic parameters (ΔG, ΔH and ΔS) for the ligand-protein interactions were also determined. ΔG values of ligand-protein interaction were calculated in the range ? 6.3 to ?5.5 kcal/mol. These negative values showed that binding process is spontaneous and, hydrogen bonding and van der Waals force were main interaction of the protein and ligands. ΔH and ΔS value were also calculated in the range of 1.10 to 1.26 kJ/mol and 0.133 to 0.135 kJ/mol. K, respectively. These positive values indicated that the binding process between ligands and BSA are endothermic and electrostatic interaction, respectively.  相似文献   

5.
Cytokinin (CTK) dehydrogenase is responsible for regulating the endogenous CTK content by oxidative removal of the side chain. Herein, we have applied fluorescence method to study the interaction between CTK dehydrogenase and CTK in vitro and obtain some parameters of their interaction. We found that addition of isopentenyl adenine can quench the fluorescence of CTK dehydrogenase, and the quenching mechanism was to be a static quenching procedure. We have measured the number of binding sites n and the apparent binding constant K and have calculated the thermodynamics parameter ΔH, ΔG, and ΔS by fluorescence quenching method. Based on thermodynamics parameter’s results, we concluded that their binding reaction was both entropy driven and the enthalpy driven, and the Van der Waals force and hydrogen bond force played a major role in the interaction. Based on the synchronous fluorescence spectrometry results, we demonstrated that the binding site between isopentenyl adenine and CTK dehydrogenase is in the microenvironment of both tryptophan and tyrosine. The fluorescence signal of coenzyme, flavin adenine dinucleotide, decreases gradually with the addition of isopentenyl adenine. And this method can be used for isopentenyl adenine routine assay. Under optimized experimental parameters, the linear segment increases from 0.6 µM to 100 µM with a regression equation of ΔF = 0.04 + 0.15cip (r = 0.999, cip in µM) with the detection limit of 0.15 µM iP.  相似文献   

6.
The interaction of a chromium (III) complex, (R,R)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diaminochromium (III), with human serum albumin, bovine serum albumin, lysozyme, and free tryptophan was studied using steady-state fluorescence spectroscopy. Dynamic and static quenching constants were calculated using Stern-Volmer kinetics. The complex bound more tightly to the serum albumins than to lysozyme or free tryptophan, but only one binding site was determined in all systems. The interaction was also determined to be thermodynamically favorable, and the binding constants were on the order of 103–106. The fluorescence quenching was static in nature with Forster distances in the 1.8–2.0 nm range.  相似文献   

7.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

8.
Fluorescence spectra, absorption spectra, melting temperature, ionic strength effect, and viscosity experiments were described that characterize the interaction of eugenol with salmon sperm DNA in vitro. Eugenol was found to bind but weakly to DNA, with binding constants of 4.23×103, 3.62×103 and 2.47×103 L mol?1 at 18, 28 and 38 °C respectively. The Stern–Volmer plots at different temperatures suggested that the quenching type of fluorescence of eugenol by DNA was a static quenching. Both the relative viscosity and the melting temperature of DNA were increased by the addition of eugenol. The changes of ionic strength had no affect on the binding. In addition, the binding constant of eugenol with single stranded DNA (ssDNA) was larger than that of eugenol with double stranded DNA (dsDNA). These results revealed that the binding mode of eugenol to DNA was intercalative binding. The thermodynamic parameters ΔH, ΔG and ΔS were also obtained according to the Van't Hoff equations, which suggested that hydrogen bond or van der Waals force might play an important role in a binding of eugenol to DNA. Based on the theory of the Förster energy transference, the binding distance between DNA and eugenol was determined as 4.40 nm, indicating that the static fluorescence quenching of eugenol by DNA was also a non-radiation energy transfer process.  相似文献   

9.
ABSTRACT

In this work, three new amide compounds of ferulic acid (FA) were synthesized. The fluorescence and ultraviolet spectroscopy were explored to study the interactions between three amide compounds of FA and bovine serum albumin (BSA) under imitated physiological conditions. The experimental results showed that the fluorescence quenching mechanism between BSA and three amide compounds of FA were mainly static quenching and nonradiation energy transfer at 25°C, 30°C, and 37°C. The Stern–Volmer quenching constants, the binding constants, and the number of binding sites and corresponding thermodynamic parameters ΔH, ΔG, and ΔS were calculated at different temperatures. From the thermodynamic parameters, we concluded that the action force was mainly a hydrophobic interaction. According to the F?rster theory of nonradiation energy transfer, the binding distances (r) between BSA and amide compounds are less than 7 nm. Furthermore, the effects of amide compounds on the conformation of BSA were analyzed using synchronous fluorescence spectroscopy.  相似文献   

10.
A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON–HSA/BSA complexes were formed. The binding constant (Kb) for HSA and was found to be 8.44×10?4 and 60.26×10?4 M?1 and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, ΔH and ΔS, for the DON–HSA system was calculated to be ?14.83 kJ mol?1 and 23.61 J mol?1 K?1, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. ΔH and ΔS for the binding of DON with BSA was ?60.08 kJ mol?1 and ?90.7441 mol?1 K?1, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl?Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1–10.0 μM for HSA, 0.1–11.2 μM for BSA and 0.2–9.7 μM for egg albumin (EA). The detection limit (3σ) for HSA was 1.12×10?10 M, for BSA it was 0.92×10?10 M and for EA it was 4.33×10?10 M. The effect of metal cations on the fluorescence spectra of DON in ethanol was also investigated. The method has been applied to detect the total proteins in human serum samples and the results were in good agreement with those reported by the hospital.  相似文献   

11.
A new fluorescent sensor, 4-allylamine-N-(N-salicylidene)-1,8-naphthalimide (1), anchoring a naphthalimide moiety as fluorophore and a Schiff base group as receptor, was synthesized and characterized. The photophysical properties of sensor 1 were conducted in organic solvents of different polarities. Our study revealed that, depending on the solvent polarity, the fluorescence quantum yields varied from 0.59 to 0.89. The fluorescent activity of the sensor was monitored and the sensor was consequently applied for the detection of Cu2+ with high selectivity over various metal ions by fluorescence quenching in Tris-HCl (pH = 7.2) buffer/DMF (1:1, v/v) solution. From the binding stoichiometry, it was indicated that a 1:1 complex was formed between Cu2+ and the sensor 1. The fluorescence intensity was linear with Cu2+ in the concentration range 0.5–5 μM. Moreso, the detection limit was calculated to be 0.32 μM, which is sufficiently low for good sensitivity of Cu2+ ion. The binding mode was due to the intramolecular charge transfer (ICT) and the coordination of Cu2+ with C = N and hydroxyl oxygen groups of the sensor 1. The sensor proved effective for Cu2+ monitoring in real water samples with recovery rates of 95–112.6 % obtained.  相似文献   

12.
The binding of pazufloxacin mesilate (PZFX) to human serum albumin (HSA) or lysozyme (Lys) was investigated using spectrophotometric techniques. The intrinsic fluorescence of both HSA and Lys was strongly quenched by PZFX. This effect was rationalized in terms of a static quenching procedure. Negative values of ΔH0 and ΔS0 for the formation of PZFX-HSA or PZFX-Lys complex implied that both hydrogen bonds and hydrophobic interactions might play a significant role in PZFX binding to HSA or Lys. The binding distances deduced from the efficiency of energy transfer were 4.04 and 3.21 nm for PZFX-HSA and PZFX-Lys systems, respectively. Furthermore, association constants and binding mechanism were successfully derived from the synchronous fluorescence spectra. Circular dichroism (CD) spectra and UV/vis detections supported a change in the secondary structure of proteins caused by the interaction of PZFX with HSA or Lys.  相似文献   

13.
The interaction between nitrophenols and 7-hydroxy-4-azidomethylcoumarin has been investigated by fluorescence and UV-vis absorbance spectroscopy. Quenching mechanisms have been evaluated by fluorescence measurements at different temperatures. Stern-Volmer quenching constant Ksv and corresponding thermodynamic parameters ΔH0, ΔG0 and ΔS0 were calculated. Binding studies concerning the number of binding sites ‘n’ and apparent binding constant ‘K’ were performed by fluorescence quenching method.  相似文献   

14.
Wen Xiu Li 《光谱学快报》2013,46(4):210-216
ABSTRACT

The interaction of isoquercitrin and bovine serum albumin (BSA) was investigated by means of fluorescence spectroscopy (FS), resonance light scattering spectroscopy (RLS), and ultraviolet spectroscopy (UV). The apparent binding constants (K a) between isoquercitrin and BSA were 5.37 × 105 L mol?1 (293.15 K) and 2.34 × 105 L mol?1 (303.15 K), and the binding site values (n) were 1.18 ± 0.03. According to the Förster theory of non-radiation energy transfer, the binding distances (r) between isoquercitrin and BSA were 1.94 and 1.95 nm at 293.15 K and 303.15 K, respectively. The experimental results showed that the isoquercitrin could be inserted into the BSA, quenching the inner fluorescence by forming the isoquercitrin–BSA complex. The addition of increasing isoquercitrin to BSA solution leads to the gradual enhancement in RLS intensity, exhibiting the formation of the aggregate in solution. It was found that both static quenching and non-radiation energy transfer were the main reasons for the fluorescence quenching. The entropy change and enthalpy change were negative, which indicated that the interaction of isoquercitrin and BSA was driven mainly by van der Waals interactions and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative.  相似文献   

15.
A new mixed ligand copper(II)-dipeptide complex with 2-(2′-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 104 M?1), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by ?OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM.  相似文献   

16.
CdSe/CdS quantum dots (QDs) capped with L-cysteine can provide an effective platform for the interactions with bovine serum albumin (BSA). In this study, absorption and fluorescence (FL) spectroscopy were used to study the binding reactions of QDs with BSA, respectively. The binding constant (??104 M-1) from FL quenching method matches well with that determined from the absorption spectral changes. The modified Stern-Volmer quenching constant (5.23?×?104, 5.22?×?104, and 4.90?×?104 M-1) and the binding sites (??1) at different temperatures (304 K, 309 K, and 314 K) and corresponding thermodynamic parameters were calculated (?G?<?0, ?H?<?0, and ?S?<?0). The results show the quenching constant is inversely correlated with temperature. It indicates the quenching mechanism is the static quenching in nature rather than dynamic quenching. The negative values of free energy (?G?<?0) suggest that the binding process is spontaneous, ?H?<?0 and ?S?<?0 suggest that the binding of QDs to BSA is enthalpy-driven. The enthalpy and entropy changes for the formation of ground state complex depend on the capping agent of QDs and the protein types. Furthermore, the reaction forces were discussed between QDs and BSA, and the results show hydrogen bonds and van der Waals interactions play a major role in the binding reaction.  相似文献   

17.
The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin–BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of BSA–scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA–scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV–vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated.  相似文献   

18.
The mechanism of interaction of the non-steroidal anti-inflammatory drugs, isoxicam (IXM) and tenoxicam (TXM) with bovine serum albumin (BSA) has been studied using spectroscopic techniques, viz., spectrofluorescence, circular dichroism (CD), UV-visible absorption and FT-IR under simulative physiological conditions. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. Thermodynamic parameters (negative ΔH0 and positive ΔS0 values obtained in the present study) revealed that the hydrophobic interactions played a major role in the interaction of these drugs with BSA. The distance, r between the donor (BSA) and acceptor (IXM/TXM) was calculated based on the Forster’s theory of non-radiation energy transfer and the values were observed to be 3.85 nm and 2.60 nm in IXM-BSA and TXM-BSA system, respectively. CD and FT-IR studies indicated that the binding of IXM/TXM to BSA induced conformational changes in BSA. The effect of common ions on the binding of IXM/TXM to BSA has been investigated.  相似文献   

19.
In this paper, the interaction between p-aminoazobenzene (PAAB) and BSA was investigated mainly by fluorescence quenching spectra, circular dichroism (CD) and three-dimensional fluorescence spectra under simulative physiological conditions. It was proved that the fluorescence quenching of BSA by PAAB was mainly a result of the formation of a PAAB-BSA complex. The modified Stern-Volmer quenching constant K a and the corresponding thermodynamic parameters ΔH, ΔG and ΔS at different temperatures were calculated. The results indicated that van der Waals interactions and hydrogen bonds were the predominant intermolecular forces in stabilizing the complex. The distance r?=?4.33 nm between the donor (BSA) and acceptor (PAAB) was obtained according to Förster’s non-radioactive energy transfer theory. The synchronous fluorescence, CD and three-dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the losing of α-helix content (from 63.57 to 51.83%) in the presence of PAAB. These revealed that the microenvironment and conformation of BSA were changed in the binding reaction.  相似文献   

20.
The removal efficiency of Viscumalbum L. from lead containing aqueous solutions was investigated. The effect of adsorbent mass, pH of solution, initial Pb(II) concentration and temperature was investigated using a batch adsorption technique. The optimum pH for Pb(II) adsorption was found as 3.0 for Viscumalbum L. Results were analyzed by the Langmuir, Freundlich, Temkin and Harkins-Jura, equation using linearized correlation coefficient at different temperature. The characteristic parameters for each isotherm have been determined. The Langmuir model agrees very well with experimental data than the other models. According to Langmuir isoterm, the monolayer saturation capacity (Qo) is 769.23 mg/g at 25 °C. Models and the isotherm constant were evaluated depending on temperature. Thermodynamic parameters such as ΔHo, ΔSo and ΔGo were calculated. The adsorption process was found to be endothermic and spontaneous. The experimental data were analyzed using the first- and the second-order kinetic models. The rate constants of adsorption for both kinetics models have been calculated. The second-order model provides the best correlation of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号