首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The unique characteristic of superatoms to show chemical properties like those of individual atoms opens a new avenue towards replacing noble metals as catalysts. Given the similar electronic structures of the ZrO superatom and the Pd atom, the CO oxidation mechanisms catalysed by (ZrO)n (n=1–4) clusters were investigated in detail to evaluate their catalytic performance. Our results reveal that a single ZrO superatom exhibits superior catalytic ability in CO oxidation than both larger (ZrO)n (n=2–4) clusters and a Pd atom, indicating the promising potential of ZrO as a “single-superatom catalyst”. Moreover, the mechanism of CO oxidation catalysed by ZrO+/− suggests that depositing a ZrO superatom onto the electron-rich substrates is a better choice for practical catalysis application. Accordingly, a graphene nanosheet (coronene) was chosen as a representative substrate for ZrO and Pd to assess their catalytic performances in CO oxidation. Acting as an “electron sponge”, this carbon substrate can both donate and accept charges in different reaction steps, enabling the supported ZrO to achieve enhanced catalytic performance in this process with a low energy barrier of 19.63 kcal/mol. This paper presents a new realization on the catalytic performance of Pd-like superatom in CO oxidation, which could increase the interests in exploring noble metal-like superatoms as efficient catalysts for various reactions.  相似文献   

2.
Analogous to atoms, superatoms can be used as building blocks to compose molecules and materials. To demonstrate this idea, the possibility of using tetrahedral Ag4 cluster to form a series of superatomic molecules Ag4X4 (X=H, Li, Na, K, Cu, Ag, Au and F, Cl, Br) is discussed. Based on the super valence bond model, a tetrahedral Ag4 cluster can be viewed as a 4-electron superatom, which can mimic a sp3 hybridization C atom. By comparison of the representative superatomic molecules Ag4X4 (X=Au, Cl) with the corresponding simple molecules CX4 (X=H, Cl), the similarities in terms of chemical bonding patterns and molecular orbitals (MOs) are conspicuous. Energy calculations predict that the Ag4 superatom can bind with all the involved ligands. Furthermore, the stabilities of superatomic molecules are enhanced by the large gaps of the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gaps) and high aromaticity. Our studies may find applications in assembling materials with superatoms.  相似文献   

3.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

4.
We report a new strategy in which a thiolate-protected Ag25 nanocluster can be doped with open d-shell group 8 (Ru, Os) and 9 (Ir) metals by forming metal hydride (RuH2, OsH2, IrH) superatoms with a closed d-shell. Structural analyses using various experimental and theoretical methods revealed that the Ag25 nanoclusters were co-doped with the open d-shell metal and hydride species to produce superatom-in-superatom nanoclusters, establishing a novel superatom doping phenomenon for open d-shell metals. The synthesized superatom-in-superatom nanoclusters exhibited dopant-dependent photoluminescence (PL) properties. Comparative PL lifetime studies of the Ag25 nanoclusters doped with 8–10 group metals revealed that both radiative and nonradiative processes were significantly dependent on the dopant. The former is strongly correlated with the electron affinity of the metal dopant, whereas the latter is governed predominantly by the kernel structure changed upon the doping of the metal hydride(s).  相似文献   

5.
《中国化学快报》2022,33(12):5147-5151
Protecting clusters from coalescing by ligands has been universally adopted in the chemical synthesis of atomically precise clusters. Apart from the stabilization role, the effect of ligands on the electronic properties of cluster cores in constructing superatoms, however, has not been well understood. In this letter, a comprehensive theoretical study about the effect of an organic ligand, methylated N-heterocyclic carbene (C5N2H8), on the geometrical and electronic properties of the aluminum-based clusters XAl12 (X = Al, C and P) featuring different valence electron shells was conducted by utilizing the density functional theory (DFT) calculations. It was observed that the ligand can dramatically alter the electronic properties of these aluminum-based clusters while maintaining their structural stability. More intriguingly, different from classical superatom design strategies, the proposed ligation strategy was evidenced to possess the capability of remarkably reducing the ionization potentials (IP) of these clusters forming the ligated superalkalis, which is regardless of their shell occupancy. The charge transfer complex formed during the ligation process, which regulates the electronic spectrum through the electrostatic Coulomb potential, was suggested to be responsible for such an IP drop. The ligation strategy highlighted here may provide promising opportunities in realizing the superatom synthesis in the liquid phase.  相似文献   

6.
Superatoms are promising materials for their potential in elemental substitution and as new building blocks. Thus far, various synthesis methods of thiol-protected Au clusters including an Au25 superatom have been investigated. However, previously reported methods were mainly depending on the thermodynamic stability of the aimed clusters. In this report, a synthesis method for thiol-protected Au clusters using a dendrimers template is proposed. In this method, the number of Au atoms was controlled by the stepwise complexation feature of a phenylazomethine dendrimer. Therefore, synthesis speed was increased compared with the case without the dendrimer template. Hybridization for the Au25 superatoms was also achieved using the complexation control of metals.  相似文献   

7.
The potential application of the jellium model as guidance in the rational design of bimetallic superalkali cations is examined under gradient-corrected density functional theory for the first time. By using Li, Mg, and Al as atomic building blocks, a series of bimetallic cationic clusters with 2, 8, 20, and 40 valence electrons are obtained and investigated. As the corresponding neutral clusters tend to lose one valence electron to achieve closed-shell states in the jellium model, these studied cations exhibit much lower vertical electron affinities (EAvert, 3.42–4.95 eV) than the ionization energies (IEs) of alkali metal atoms, indicating their superalkali identities. The high stability of these cationic clusters is guaranteed by their considerable HOMO–LUMO gaps and binding energies per atom. Moreover, the feasibility of using the designed superalkalis as efficient reductants to activate CO2 and N2 molecules and as stable building blocks to assemble ionic superatom compounds is explored. Therefore, this study may provide an effective method for obtaining various metallic superatoms with extensive applications on the basis of the simple jellium rule.  相似文献   

8.
By using the Amsterdam Density Functional program, we have studied the geometric features, stabilities and magnetic properties of AlnCu (n = 1–19) clusters. The magnetic structures of Al17Cu2 and Al19Cu clusters are found. Although the high spin ground state of Al12Cu cluster is in accordance with the Hund’s rule under spherical Jellium model (SJM), it is difficult to explain why the Al17Cu2 and Al19Cu clusters exhibit larger magnetic moments by the model. A superatom model under equivalent charge distribution is proposed. The magnetic properties of the Cu-doped Al clusters can be explained well by combination of the superatom model with SJM.  相似文献   

9.
The structure and properties of the Li(HF)3Li cluster with C3h symmetry are investigated using ab initio calculations. This Li(HF)3Li is a metal–nonmetal–metal sandwich‐like cluster connected mainly by the intermolecular interactions. In the special cluster, the (HF)3 containing the triangular F ring with the negative charges is sandwiched between two Li atom. It is interesting that under the action of the triangular F ring with the negative charges, the valence electrons of two Li atoms are pushed out to form the distended excess electron cloud that surrounds the Li(HF)3Li as a core. So the Li(HF)3Li cluster shows not only the electride characteristic, but new superatom characteristics as well. Several characteristics of the special superatom are found. First, the superatom contains the double shell nucleus. The internal nucleus is the regular triangular ring made of three F atoms with the negative charge and the outer‐shell nucleus is made up of three H and two Li atoms with the positive charge. Second, the bonding force of this superatom framework is mainly the intermolecular interaction force, the lithium bond, which is different from that (covalent bond or ionic bond) of the general superatom. Third, the interaction between the outer‐shell nucleus and the excess electron cloud is mainly the anti‐excess‐electron hydrogen bond. Fourth, the special superatom exhibits the new aromaticity (NICS = ?8.37 ppm at the center of the regular triangular F ring), which is the aromaticity found in the cluster of the intermolecular interaction. This is the new knowledge of the aromaticity. Fifth, the large polarizability of the superatom is revealed. Further, the vertical ionization energy (VIE) of the superatom is low, 4.51 eV (<5.210 eV of the alkaline–earth metal Ba) so that it may be viewed as a superalkaline–earth metal atom. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

10.
Building framework materials with desirable properties and enhanced functionalities with nanocluster/superatom complexes as building blocks remains a challenge in the field of nanomaterials. In this study, the chiral [Au1Ag22(S-Adm)12]3+ nanocluster/superatom complex (SC, in which S-Adm=1-adamantanethiol) was employed as a building block to construct the three-dimensional (3D) superatom complex inorganic framework (SCIF) materials SCIF-1 and SCIF-2 through inorganic SbF6 linkers. SCIF-1 is racemic due to the assembly of two SC enantiomers in a single crystal. In SCIF-2, the SC enantiomers are packed in separate crystals, thus producing larger channels and a circularly polarized luminescence (CPL) response. These two 3D SCIF materials exhibit unique sensitive photoluminescence (PL) in protic solvents. Our study provides a new pathway for creating novel open-framework materials with superatom complexes and a foundation for the further development of 3D framework materials for sensing and other applications.  相似文献   

11.
Building framework materials with desirable properties and enhanced functionalities with nanocluster/superatom complexes as building blocks remains a challenge in the field of nanomaterials. In this study, the chiral [Au1Ag22(S‐Adm)12]3+ nanocluster/superatom complex (SC, in which S‐Adm=1‐adamantanethiol) was employed as a building block to construct the three‐dimensional (3D) superatom complex inorganic framework (SCIF) materials SCIF‐1 and SCIF‐2 through inorganic SbF6? linkers. SCIF‐1 is racemic due to the assembly of two SC enantiomers in a single crystal. In SCIF‐2, the SC enantiomers are packed in separate crystals, thus producing larger channels and a circularly polarized luminescence (CPL) response. These two 3D SCIF materials exhibit unique sensitive photoluminescence (PL) in protic solvents. Our study provides a new pathway for creating novel open‐framework materials with superatom complexes and a foundation for the further development of 3D framework materials for sensing and other applications.  相似文献   

12.
Developing efficient catalysts for the conversion of CO2 into fuels and value-added chemicals is of great significance to relieve the growing energy crisis and global warming. With the assistance of DFT calculations, it was found that, different from Al12X (X=Be, Al, and C), the alkali-metal-like superatom Al12P prefers to combine with CO2 via a bidentate double oxygen coordination, yielding a stable Al12P(η2-O2C) complex containing an activated radical anion of CO2 (i.e., CO2.−). Thereby, this compound could not only participate in the subsequent cycloaddition reaction with propylene oxide but also initiate the radical reaction with hydrogen gas to form high-value chemicals, revealing that Al12P can play an important role in catalyzing these conversion reactions. Considering that Al12P has been produced in laboratory and is capable of absorbing visible light to drive the activation and transformation of CO2, it is anticipated that this work could guide the discovery of additional superatom catalysts for CO2 transformation and open up a new research field of superatom catalysis.  相似文献   

13.
We have shown recently that the ground state and low-lying energy isomers of the endohedral M@Si16 clusters (M = Sc, Ti, V+) have a nearly spherical cage-like symmetry with a closed shell electronic structure which conforms them as exceptional stable entities. This is manifested, among other properties, by a large Homo–Lumo gap about 2 eV which suggest the possibility of using these clusters as basic units (superatoms) to construct optoelectronic materials. As a first step in that direction, we have studied in this work, by means of first principles calculations, the trends in the formation of [Ti@Si16] n , [Sc@Si16K] n , and [V@Si16F] n aggregates as their size increases, going from linear to planar to three dimensional arrangements. The most favorable configurations for n ≥ 2 are those formed from the fullerene-like D4d isomer of M@Si16, instead of the ground state Frank–Kasper T d structure of the isolated M@Si16 unit, joined by Si–Si bonds between the Si atoms of the square faces. In all cases the Homo–Lumo gap for the most favorable structure decrease with the size n. Trends for the binding energy, dipole moment, and other electronic properties are also discussed. Several crystal structures constructed from these superatom, supermolecules, and aggregates have been tested and preliminary results are summarily commented.  相似文献   

14.
Inspired by the concept of superatom via substitutionally doping an Al13 magic cluster, we investigated the H2 molecule dissociation on the doped icosahedral Al12X (X = B, Al, C, Si, P, Mg, and Ca) clusters by means of density functional theory. The computed reaction energies and activation barriers show that the concept of superatom is still valid for the catalysis behavior of doped metal clusters. The hydrogen dissociation behavior on metal clusters characterized by the activation barrier and reaction energy can be tuned by controllable doping. Thus, doped Al12X clusters might serve as highly efficient and low‐cost catalysts for hydrogen dissociation. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

15.
A novel bisphosphine ligated Ag60 nanocluster, [{Cl@Ag12}@Ag48(dppm)12], has been dis-covered and characterized by X-ray crystallography. It consists of a central chloride located inside an icosahedral silver core layer, which is further encased by a second shell of 48 silver atoms/ions, which are capped with 12 bis(diphenylphosphino)methane (dppm) ligands. Due to lack of sufficient material the cluster could not be further characterized by other methods. DFT calculations were carried out on the cation [{Cl@Ag12}@Ag48(dppm)12]+ to determine if it corresponds to a superatom with a core count of n=58. The DFT optimized structure is in agreement with X-ray ndings, but the low value of the HOMO-LUMO gap does not support superatom stability.  相似文献   

16.
It has recently been demonstrated that chosen clusters of specific size and composition can exhibit behaviors reminiscent of atoms in the periodic table and hence can be regarded as superatoms forming a third dimension. An Al(13) cluster has been shown to mimic the behavior of halogen atoms. Here, we demonstrate that superatom compounds formed by combining superhalogens (Al(13)) with superalkalis (K(3)O and Na(3)O) can exhibit novel chemical and tunable electronic features. For example, Al(13)(K(3)O)3 is shown to have low first and second ionization potentials of 2.49 and 4.64 eV, respectively, which are lower than alkali atoms and can be regarded as ultra alkali motifs. Al(13)K(3)O is shown to be a strongly bound molecule that can be assembled into stable superatom assemblies (Al(13)K(3)O)n with Al(13) and K(3)O as the superatom building blocks. The studies illustrate the potential of creating new materials with an unprecedented control on physical and electronic properties.  相似文献   

17.
Using the DFT method the 33‐atom intermetalloid [M13@Bi20] clusters (M: 3d, 4d transition metals) which are composed of Bi20 pentagonal dodecahedra surrounded by M12 icosahedra with a single M atom at the center are systematically examined to explore the possibility of the clusters being superatoms.  相似文献   

18.
A novel discrete [Ag21{S2P(OiPr)2}12](PF6) nanocluster has been synthesized and characterized by single‐crystal X‐ray diffraction and also NMR spectroscopy (1H, 31P), ESI mass spectrometry, and other analytic techniques (XPS, EDS, UV/Vis spectroscopy). The Ag21 skeleton has an unprecedented silver‐centered icosahedron that is capped by eight additional metal atoms. The whole framework is protected by twelve dithiophosphate ligands. According to the spherical Jellium model, the stability of monocationic nanocluster can be described by an 8‐electron superatom with 1S2 1P6 configuration, as confirmed by DFT calculations.  相似文献   

19.
The design of metal–organic frameworks (MOFs) that incorporate more than one metal cluster constituent is a challenging task. Conventional one-pot reaction protocols require judicious selection of ligand and metal ion precursors, yet remain unpredictable. Stable, preformed nanoclusters, with ligand shells that can undergo additional coordination-driven reactions, provide a platform for assembling multi-cluster solids with precision. Herein, a discrete Co6S8(PTA)6 (PTA=1,3,5-triaza-7-phosphaadamantane) superatomic-metalloligand is assembled into a three-dimensional (3D) coordination polymer comprising Cu4I4 secondary building units (SBUs). The resulting heterobimetallic framework ( 1 ) contains two distinct cluster constituents and bifunctional PTA linkers. Solid-state diffuse reflectance studies reveal that 1 is an optical semiconductor with a band-gap of 1.59 eV. Framework-modified electrodes exhibit reversible redox behavior in the solid state arising from the Co6S8 superatoms, which remain intact during framework synthesis.  相似文献   

20.
Based on the density functional theory for exchange‐correlation potential, fluorocarbon molecular cages are investigated as building blocks of hyperhalogens. By utilizing C8F7 as a ligand, a series of hyperhalogen anions, that is, M(C8F7)2? (M=Li, Na, and K) and M(C8F7)3? (M=Be, Mg, and Ca), are modeled. Calculations show that all the C8F7 moieties preserve their geometric and electronic integrity in these anions. These anionic molecules possess larger vertical electron detachment energies (5.11–6.45 eV) than that of C8F7?, verifying their hyperhalogen nature. Moreover, it is also revealed that using larger fluorinated cage C10F9 as ligands can bring about hyperhalogen anions with larger vertical electron detachment energies. The stability of these studied anions is determined by their large HOMO–LUMO gaps and positive dissociation energies of predetermined possible fragmentation pathways. It is hoped this study will provide an approach for the construction of new types of hyperhalogens and stimulate more research in superatom chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号