首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this article, the effect of the electron collision frequency with background ions on TM mode field components, the trajectory, and the electron energy gain in interaction infrared radiation with collisional plasma is studied. The field components of the TM mode in the rectangular and circular collisional plasma waveguides are obtained. The deflection angle and acceleration gradient of an electron in the fields associated with a transverse magnetic (TM) wave propagating inside a plasma waveguide for TM mode is studied. The relativistic momentum and energy equations for an electron are solved, which was injected initially along the propagation direction of the infrared. The results for collisionless and collisional plasma are graphically represented. Finally, the results for rectangular and circular waveguides are compared.  相似文献   

2.
The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.  相似文献   

3.
The dynamics and energy gain of an electron in the field of a transverse electric wave propagating inside an elliptical waveguide is analytically investigated by considering the existence of a helical magnet in which the field is perpendicular to the axis of the waveguide and rotating as a function of position along the magnet. Besides, by solving the relativistic momentum and energy equations, the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. It is shown that the electron is deflected due to the field components of the transverse electric mode of this microwave, and at the same time, it is accelerated by these fields. Furthermore, the expressions of the acceleration gradient and deflection angle for an electron in the transverse electric mode inside the plasma elliptical waveguide without a static helical magnet are presented, which was injected initially along the propagation direction of the microwave. The results are graphically presented.  相似文献   

4.
A. I. Matveev 《Technical Physics》2012,57(12):1646-1655
The formation of a transverse wave with a phase velocity lower than the velocity of light, which can exist in an equilibrium plasma without a slow-wave structure in zero magnetic field, is described. It involves the transformation of a transverse wave with trapped electrons, traveling along the magnetic field, into a slow transverse wave after the removal of the magnetic field. During the evolution of the wave with trapped electrons, the magnetic induction decreases very slowly in the direction of the wave propagation. As a result, the velocity at which electrons are in resonant interaction with the wave increases; therefore, the electrons fall to the bottom of potential wells. Under the influence of the trapped electrons, the phase velocity of the wave decreases and becomes lower than the velocity of light. It becomes equal to the velocity at which the electrons are in resonance interaction with the wave at the instant when the magnetic field vanishes. It is demonstrated that a transverse wave with a velocity lower than the velocity of light can exist in an equilibrium plasma even after the magnetic field vanishes; in this case, the flow of trapped electrons serves as a slow-wave structure.  相似文献   

5.
We consider semiclassical higher-order wave packet solutions of the Schr?dinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) variant Planck's over 2pil (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.  相似文献   

6.
7.
8.
Bak D  Kim SK  Soh KS  Yee JH 《Physical review letters》2000,85(15):3087-3090
We consider the nonrelativistic field theory with a quartic interaction on a noncommutative plane and compute the 2-->2 scattering amplitude within perturbative analysis to all orders. We regain the results of the perturbative analysis by finding the scattering and the bound state wave functions of the two particle Schrodinger equation. These wave functions unusually have two center positions in the relative coordinates, whose separation is transverse to the total momentum and scales linearly with its magnitude, exhibiting the stringy nature of the noncommutative field theory.  相似文献   

9.
The nonlinearly coupled Vlasov-Maxwell ion-plasma field equations are solved exactly for a transversely uniform subgroup of rotational modes induced by a uniform axial magnetic field. The ion orbits in momentum space are bipolar doubly periodic eigenfunctions of ion proper time, obtained in closed form as the difference between two doubly quasi-periodic Weierstrass zeta functions. The ion orbits in position space are helical-spiral doubly quasi-periodic functions of ion proper time, expressible simply in terms of doubly quasi-periodic Weierstrass sigma functions. The complete ion distributions are flexible functions of six constants of the ion motion: wave-frame ion energy, transverse gyro center, an inner Hamiltonian correlating wave-frame ion momentum with wave-frame axial position, and both first and second axial integration constants. A rotary electromagnetic plane wave propagates along the axial magnetic field with complex cisoidal dependence upon wave-frame axial position. The eigenvalue determination intricately interrelates the wave propagation vector, the wave amplitude, the axial magnetic field, the double periods, and the bipole separation.  相似文献   

10.
The function of charge distribution over the momentum projections in a preset field of a circularly polarized rf transverse electromagnetic wave propagating along a constant uniform magnetic field with phase velocity u > c is obtained by solving the relativistic collisionless kinetic equation. The peculiarities in energy associated with the nonlinearity of the cyclotron resonance for various values of the phase velocity are analyzed in the limits of single-valuedness of the resonance curve. Some distribution functions are considered.  相似文献   

11.
We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark–diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space.  相似文献   

12.
The Langevin form of the quasiclassical approximation for an electron in a magnetic field is used to find the most general expression in the first order in fa for the vacuum-fluctuation Lorentz force. It is shown that besides the mechanism of excitation of fluctuation oscillations due to the recoil momentum there also exists a transverse (relative to the photon wave vector) fluctuation force due to the incomplete compensation of the electric force and the transverse component of the magnetic Lorentz force.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 42–46, March, 1981.  相似文献   

13.
We study the field structure and dispersion properties of a hybrid eigenmode guided by a nonuniform magnetized plasma waveguide. It is shown that the rotational and quasi-potential waves contribute to the formation of such a mode in the whistler frequency range. Depending on the plasma density, the rotational component of the hybrid mode is determined by either waves with complex transverse wave numbers or whistler waves, or by true surface waves. In the presence of an axial nonuniformity of the plasma in a channel, the transverse field structure of the propagating mode changes, which is stipulated by changes in both the values of transverse wave numbers and their dependence on the radial coordinate. It is found that the spectrum of axial wave numbers of eigenmodes of a plasma waveguide undergoes a pronounced condensation when smoothing the waveguide walls. The damping of the hybrid mode of a nonuniform waveguide due to electron collisions is found and it is shown that collisional losses determine the damping of waves trapped in the waveguide in the experiments on ionization self-channeling of whistler waves. We have found the effect of “displacing” the strong field from the inner core to the background outer region of the waveguide with increasing plasma density on its axis and broadening background region. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 7, pp. 607–617, July 2006.  相似文献   

14.
By Whitham's method of averaged Lagrangian and using Low's form of Lagrangian, coupled mode equations and coupling coefficients are derived for resonant nonlinear interaction of two longitudinal and one transverse wave in a magnetized plasma, in which the later wave propagates along the external uniform magnetic field. The limiting form of these coupling coefficients are obtained when the external magnetic field vanishes.  相似文献   

15.
Relativistic propagation of a nonlinearly-coupled circularly-polarised electromagnetic wave and a Langmuir wave along the applied magnetic field is considered. Analytical solutions are given or are indicated for some special cases like purely transverse waves and purely longitudinal waves. In the presence of an applied magnetic field, the incident circularly polarised electromagnetic wave is found to propagate further into denser regions of the plasma — a result which is in accord with the so-called inverse Faraday effect. Finally, we shall consider general coupled transverse and longitudinal waves for which we give an approximate solution. We investigate whether this system of coupled waves exhibits any internal resonances and consequent energy exchange between them.  相似文献   

16.
The vectorial structure of an optical field with hybrid states of polarization(So P) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial So P of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions.  相似文献   

17.
18.
An elliptically polarized electromagnetic wave in an underdense plasma acquires a longitudinal component of the electric field which oscillates as even harmonics of the fundamental frequency. The phase shift between transverse field components and the wave amplitudes exhibit nonlinear oscillations.  相似文献   

19.
S Ghosh  P K Sen  S Guha 《Pramana》1979,13(6):599-606
Using the hydrodynamic model of homogeneous plasma, the parametric decay of a laser beam into an acoustic wave and another electromagnetic wave has been studied in heavily dopedn-type piezoelectric semiconductors in the presence of a transverse magnetostatic field. This decay process results in the parametric excitation of the hybrid mode. The threshold electric field necessary for the onset of instability equals to zero. The magnetostatic field couples the acoustic and the electromagnetic waves and in its absence the instability disappears. The growth rate increases with the square of the magnetic field.  相似文献   

20.
We report on observations of shear Alfvén waves radiated from a source of small transverse size, and the subsequent radial confinement of wave magnetic field energy within a cylindrical plasma. The radius of confinement lies between the kinetic regime of the bulk plasma and the inertial regime at the plasma edge; this radius is found to be a function of wave frequency. Numerical calculations using kinetic theory predict a zero in the perpendicular group velocity at a radius which varies in accord with the observations. An analytic expression for the perpendicular group velocity (valid for small perpendicular wave numbers) is given in the vicinity of the zero crossing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号