首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of hexaethylene glycol mono-n-tetradecyl ether (C(14)EO(6)) layers adsorbed onto different model surfaces was systematically investigated by means of QCM-D (quartz crystal microbalance-dissipation) and ellipsometry. The amount of non-ionic surfactant adsorbed is determined both at hydrophilic and hydrophobic surfaces. In particular, the substrates employed were hydrophilic silica, hydrophobized silica (using dimethyldichlorosilane), and hydrophobized gold surfaces (using 10-thiodecane and 16-thiohexadecane). It was shown that the frequency shift obtained from the QCM-D experiments results in an overestimation of the adsorbed mass. This is attributed to two different effects, viz. water that is coupled to the adsorbed layer due to hydration of the polar region of the surfactant and second water that for other reasons is trapped within the adsorbed layer. Furthermore, from the ellipsometry data the adsorbed layer thickness is determined. By combining the thickness information and the dissipation parameter (obtained from the QCM-D experiments), we note that the dissipation parameter is insufficient in describing the viscoelastic character of thin surfactant films.  相似文献   

2.
When diluted solutions of giant micelles are under turbulent flow, large attenuations of the turbulence can be observed due to the action of the micelles on the dissipative vortices formed within the flow. This particular property is rapidly lost when the solution is heated due breakup of the giant micelles. Based on this property, we present a thermal-flow study of a mixed giant micelle formed by the combination of two surfactants and sodium salicylate. One of the surfactants, cetyltrimethylammonium bromide (C(16)TAB) was kept fixed, and the others were dodecyltrimethylammonium bromide (C(12)TAB), tetradecyltrimethylammonium bromide (C(14)TAB), octadecyltrimethylammonium bromide (C(18)TAB), polyoxyethylene (10) oleyl ether (Brij 97) or sodium dodecyl sulfate (SDS). Thermal diagrams for the combinations of the surfactants reveal deviations of the ideality. For the cationic surfactants, a synergistic effect was only observed when C(16)TAB was combined with the shorter surfactants.  相似文献   

3.
A quartz crystal microbalance with dissipation (QCM-D) was used to measure the adsorption from aqueous solutions of CTAB (cationic) and C(12)E(6) (nonionic) surfactants on gold and silica surfaces. QCM-D allows for the determination of adsorption isotherms and also the monitoring of the dynamics of adsorption in real time. By considering the atomic-scale roughness of the solid surfaces and the surface area per head group at the air/water interface, our experiments indicate that at bulk concentrations above the critical micelle concentration adsorbed C(12)E(6) forms a monolayer-like structure on both surfaces and CTAB yields a bilayer-like structure. Although our measurements do not allow us to discriminate between the morphology of the aggregates (i.e., between flat monolayers, hemicylinders, or hemispheres in the case of C(12)E(6) and between flat bilayers, cylinders, or spheres in the case of CTAB), these results are particularly significant when compared to recent QCM-D data reported by Macakova et al. (Macakova, L.; Blomberg, E.; Claesson, P. M. Langmuir 2007, 23, 12436). These authors reported that QCM-D overestimates the amount of CTAB adsorbed on silica by as much as 30-40% as a result of entrapped water. Our analysis suggests that the effect of entrapped solvent is not as important as previously assumed and, in fact, QCM-D may not overestimate the amount of CTAB adsorbed when roughness is considered. Results for the kinetics of adsorption suggest that the aggregate structure as well as whether micelles are present may influence the adsorption mechanism. We discuss our results in the perspective of molecular theories for both the equilibrium and kinetics of surfactant adsorption.  相似文献   

4.
The composition and morphology of mixed adsorbed layers comprising one of several poly(oxyethylene) alkyl ether nonionic surfactants, C(i)E(j), and two cationic surfactants-dodecyltrimethylammonium bromide (DTAB) and tetradecyltriethylammonium bromide (TTeAB)-at the mica/solution interface have been studied using depletion adsorption and atomic force microscopy. The nonionic surfactants do not themselves adsorb onto mica, but can coadsorb with a cationic surfactant. The extent of their hydrophobic association with the adsorbed cationic surfactant depends on alkyl chain length, while the adsorbed layer morphologies are sensitive to the number of ethoxy groups. Nonionic surfactants with headgroups containing less than eight ethylene oxide units decrease the adsorbed aggregate curvature, gradually transforming globular TTeAB or cylindrical DTAB adsorbed aggregates into a rod, mesh, or bilayer structure. Those with larger headgroups favor globular aggregates. The mechanism by which the nonionic surfactant modifies the adsorbed morphology is the formation of defects in the form of cylinder end-caps or branch-points, leading to adsorbed layer compositions that differ from ideal mixing predictions. All mixed adsorbed films become saturated with the nonionic component when the capacity of the aqueous side of the adsorbed layer is reached.  相似文献   

5.
The vesicle-micelle transition in aqueous mixtures of dioctadecyldimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSC), steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T(m) of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around x(DODAB) approximately 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When x(DODAB)>0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when x(DODAB)<0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius R(H) of about 180 and 500-800 nm, respectively, as obtained by DLS measurements.  相似文献   

6.
The adsorption of the monomeric/gemini surfactant mixtures at the silica/aqueous solution interface has been characterized on the basis of quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) data. The gemini surfactant employed in this study was cationic 1,2-bis(dodecyldimethylammonio)ethane dibromide (12-2-12). This surfactant was mixed with monomeric surfactants (dodecyltrimethylammonium bromide (DTAB), hexadecyltrimethylammonium bromide (HTAB), and octaoxyethylenedodecyl ether (C(12)EO(8))) in the presence of an added electrolyte (NaBr). The key finding in our current study is that the addition of the gemini surfactant (12-2-12) makes significant impact on the adsorption properties even when the mole fraction of 12-2-12 is quite low in the surfactant mixtures. This is suggested by the experimental results that (i) the QCM-D adsorption isotherms measured for the monomeric/gemini surfactant mixtures shift to the region of lower surfactant concentrations compared with the monomeric single systems; (ii) the adsorbed layer morphology largely depends on the mole fraction of 12-2-12 in the surfactant mixtures, and the increased 12-2-12 mole fraction results in the less curved surface aggregates; and (iii) the addition of 12-2-12 yields a relatively rigid adsorbed layer when compared with the layer formed by the monomeric single systems. These adsorption properties result from the fact that the more favorable interaction of 12-2-12 with the silica surface sites drives the overall surfactant adsorption in these mixtures, which is particularly obvious in the region of low surfactant concentrations and at the 12-2-12 low mole fractions. We believe that this knowledge should be important when considering the formulation of gemini surfactants into various chemical products.  相似文献   

7.
The adsorbed layers of N,N,N-trimethyl-10-(4-nitrophenoxy)decylammonium bromide (PhiC(10)TAB) and N,N,N('),N(')-tetramethyl-N,N(')-bis[10-(4-nitrophenoxy)decyl]-1,6-hexanediammonium dibromide [(PhiC(10))(2)C(6)] at the air/water interface have been studied by neutron reflection. The coverage of the surfactants was obtained over the concentration range from critical micelle concentration (CMC) to CMC/100. The area per PhiC(10)TAB molecule changes from 50+/-3 to 390+/-60 A(2) over this concentration range and the area per (PhiC(10))(2)C(6) molecule changes from 139+/-3 to 288+/-10 A(2). The overall thicknesses (single uniform layer) of the surfactant layers at CMC are about 19 and 16 A for PhiC(10)TAB and (PhiC(10))(2)C(6) respectively. The distributions of the C(10) chains show that the chains of both surfactants are tilted away from surface normal, with the tilt increasing in the outer part of the layer. The distribution of C(10) chains in (PhiC(10))(2)C(6) is narrower than that in PhiC(10)TAB, indicating that the alkyl chains of (PhiC(10))(2)C(6) are more tilted. For both surfactants, the broad nitrophenoxy distribution may indicate significant positional disorder of the nitrophenoxy groups along the surface normal direction and their intermixing with alkyl chains in the adsorbed layer.  相似文献   

8.
Studying the disjoining pressure Pi as a function of the film thickness h (Pi-h curves) of foam films stabilized by ionic and nonionic surfactants, one finds that the surface charge density q0 of films stabilized by ionic surfactants increases with increasing surfactant concentration, while the opposite holds true for nonionic surfactants. Thus, it should be possible to tune the surface charge density with mixtures of nonionic and ionic surfactants. To address this question, we studied foam films stabilized by aqueous solutions of surfactant mixtures. The mixtures consisted of the nonionic beta-dodecylmaltoside (beta-C12G2) and the cationic dodecyl trimethylammonium bromide (C12TAB) with mixing ratios of beta-C12G2/C12TAB = 1:0, 50:1, 1:1, 1:50, 0:1. The addition of small amounts of C12TAB to beta-C12G2 first neutralizes the negative surface charge of the beta-C12G2 films and finally leads to a charge reversal from negatively to positively charged surfaces. On the other hand, by adding small amounts of beta-C12G2 to C12TAB, one observes the formation of stable CBFs which was also observed for the pure C12TAB. However, in contrast to the pure C12TAB, the resulting Pi-h curves for the mixtures cannot be described with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; the slope of the curves is too steep, and it barely changes with changing electrolyte concentration. A possible explanation for this observation will be given and discussed.  相似文献   

9.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups.  相似文献   

10.
The equilibrium adsorption behavior of two n-alkyl-beta-D-glucosides (octyl (C8G1) and decyl (C10G1)) and four n-alkyl-beta-D-maltosides (octyl (C8G2), decyl (C10G2), dodecyl (C12G2), and tetradecyl (C14G2)) from aqueous solution on a titania surface, as measured by ellipsometry, has been investigated. The main focus has been on the effect of changes in the alkyl chain length and headgroup polymerization, but a comparison with their adsorption on the silica/water and air/water interfaces is also presented. Some comparison with the corresponding adsorption of ethylene oxide surfactants, in particular C10E6 and C12E6, is given as well. For all alkyl polyglucosides, the maximum adsorbed amount on titania is reached slightly below the critical micelle concentration (cmc), where it levels off to a plateau and the amount adsorbed corresponds roughly to a bilayer. However, there is no evidence that this is the actual conformation of the surfactant assemblies on the surface, but the surfactants could also be arranged in a micellar network. On hydrophilic silica, the adsorbed amount is a magnitude lower than on titania, corresponding roughly to a layer of surfactants lying flat on the surface. A change in the alkyl chain length does not result in any change in the plateau molar adsorbed amount at equilibrium; however, the isotherm slope for the alkyl maltosides increases with increasing chain length. Headgroup polymerization on the other hand affects the adsorbed amount. The alkyl glucosides start adsorbing at lower bulk concentrations than the maltosides and equilibrate at higher adsorbed amounts above the cmc. When compared with the ethylene oxide (EO) surfactants, it is confirmed that the EO surfactants hardly adsorb on titania, since the measured changes in the ellipsometric angles are within the noise level. They do, however, adsorb strongly on silica.  相似文献   

11.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

12.
This paper demonstrates the use of polyelectrolytes to modify and manipulate the adsorption of ionic surfactants onto the hydrophilic surface of silica. We have demonstrated that the cationic polyelectrolyte poly(dimethyl diallylammonium chloride), poly-dmdaac, modifies the adsorption of cationic and anionic surfactants to the hydrophilic surface of silica. A thin robust polymer layer is adsorbed from a dilute polymer/surfactant solution. The resulting surface layer is cationic and changes the relative affinity of the cationic surfactant hexadecyl trimethylammonium bromide, C16TAB, and the anionic surfactant sodium dodecyl sulfate, SDS, to adsorb. The adsorption of C16TAB is dramatically reduced. In contrast, strong adsorption of SDS was observed, in situations where SDS would normally have a low affinity for the surface of silica. We have further shown that subsequent adsorption of the anionic polyelectrolyte sodium poly(styrene sulfonate), Na-PSS, onto the poly-dmdaac coated surface results in a change back to an anionic surface and a further change in the relative affinities of the cationic and anionic surfactants for the surface. The relative amounts of C16TAB and SDS adsorption depend on the coverage of the polyelectrolyte, and these preliminary measurements show that this can be manipulated.  相似文献   

13.
In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.  相似文献   

14.
Properties of binary surfactant systems of nonionic surfactants poly(ethylene oxide) (PEO) lauryl ethers (C(12)E(10), C(12)E(23), C(12)E(42)) with a cationic gemini surfactant, butanediyl-α,ω-bis(tetradecyldimethylammonium bromide) (14-4-14), have been investigated by Steady-state Fluorescence (FL), zeta potential, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), Cryogenic Transmission Electron Microscopy (CryoTEM), and X-ray Diffraction (XRD). Through FL measurements, critical micelle concentration (CMC) of the three binary systems for different mixing mole fractions is determined and the values fall between those of pure constituent surfactants. Ideal CMC (CMC(ideal)), mole fraction in aggregates (X), interaction parameter (β), activity coefficients (f(1) and f(2)), and excess free energy of mixing (ΔG(ex)) have been calculated. All these parameters indicate nonideal behavior and synergistic interactions between the constituent surfactants, which is explained in terms of electrostatic attraction between headgroups of constituent surfactants and reduction of electrostatic repulsion between headgroups of 14-4-14 due to the presence of nonionic surfactants. DLS, TEM and CryoTEM results show that nonionic surfactants facilitate the formation of larger aggregates. Micelles and vesicles in larger size compared with those of 14-4-14 coexist in the mixed solutions. Both surfactant composition and PEO chain length are found to play a strong effect on the properties of the binary systems.  相似文献   

15.
Aggregation in mixed water-glycol and pure glycol solvents has been investigated with four related surfactants, bearing common C12 tails: anionic, sodium dodecylsulfate (SDS); cationic, dodecyltrimethylammonium bromide (C12TAB); zwitterionic C12-amidopropyldimethylamine betaine (betaine) and nonionic, octaethyleneglycol monododecyl ether (C12E8). The solvent media were water, water/ethylene glycol, and water/propylene glycol mixtures, as well as pure ethylene glycol (EG) and propylene glycol (PG), spanning relative dielectrics epsilon(r) from 79 to 30. Results from small-angle neutron scattering (SANS) experiments, employing deuterated solvents, were consistent with the presence of ellipsoidal, or cylindrical micelles, depending on solvent and surfactant type. In pure EG and PG solvents the ionic and zwitterionic surfactants exhibit only weak aggregation, with much smaller micelles than normally found in water. However, interestingly, pure EG is identified as a solvent in which nonionic C12E8 aggregates strongly, mirroring the behavior in water. In contrast when the solvent is changed to PG (epsilonr=30) aggregation of C12E8 is only minimal. Hence, aggregation is shown to be strongly dependent on surfactant type and identity of the glycol solvent.  相似文献   

16.
研究阴、阳离子表面活性剂混合体系(十二烷基氯代吡啶,辛基磺酸钠,辛基三乙基溴化铵/十二烷基苯磺酸钠)在硅胶,纯水和硅胶,矿化水界面上的吸附作用,探讨阴(阳)离子表面活性剂的存在对阳(阴)离子表面活性剂吸附作用的影响.结果表明,阴离子表面活性剂的存在基本不影响阳离子表面活性剂在带负电固体表面的吸附;而阳离子表面活性剂的存在却使本来吸附量就不大的阴离子表面活性剂在带负电的固体表面上不再吸附.在矿化水中阳离子表面活性剂的吸附量比在纯水中明显降低.从硅胶表面吸附机制解释了所得结果.  相似文献   

17.
Forces have been measured between silica surfaces with adsorbed surfactants by means of a bimorph surface force apparatus. The surfactants used are the cationic surfactant tetradecyltrimethylammonium bromide (TTAB) and the nonionic surfactant hexakis(ethylene glycol) mono-n-tetradecyl ether (C(14)E(6)) as well as mixtures of these two surfactants. The measurements were made at elevated pH, and the effect of salt was studied. At high pH the glass surface is highly charged, which increases the adsorption of TTAB. Despite the low adsorption generally seen for nonionic surfactants on silica at high pH, addition of C(14)E(6) has a considerable effect on the surface forces between two glass surfaces in a TTAB solution. The barrier force is hardly affected, but the adhesion is reduced remarkably. Also, addition of salt decreases the adhesion, but increases the barrier force. In the presence of salt, addition of C(14)E(6) also increases the thickness of the adsorbed layer. The force barrier height is also shown to be related to literature values for surface pressure data in these systems.  相似文献   

18.
Two small series of cationic gemini surfactants with dodecyl tails have been synthesized and evaluated with respect to self-assembly in bulk water and at different solid surfaces. The first series contained a flexible alkane spacer and is denoted 12-n-12, with n = 2, 4, and 6. The second series had a phenylene group connected to the quaternary nitrogens in either the meta or para position and the surfactants are referred to as 12-m-Φ-12 and 12-p-Φ-12, respectively. The phenylene group is a rigid linker unit. The critical micelle concentration (cmc) was determined both by tensiometry and by conductometry, and the packing density of the surfactants at the air-water interface was calculated from the Gibbs equation. The cmc values for the geminis with a rigid spacer, 12-m-Φ-12 and 12-p-Φ-12, were of the same order of magnitude as for 12-4-12, which is the flexible surfactant that most closely matches the phenylene-based surfactants with respect to hydrophobicity, measured as log P, and distance between the positively charged nitrogen atoms. The adsorption of flexible and rigid surfactants was investigated on gold, silicon dioxide (silica), gold made hydrophobic by the self-assembly of hexadecanethiol, and gold made hydrophilic by the self-assembly of 16-hydroxyhexadecanethiol. On all of the surfaces, there was a reverse relationship between the adsorbed amount at the cmc and the length of the spacer (i.e., 12-2-12 gave the highest and 12-6-12 gave the lowest amount of adsorbed material). The adsorption pattern was similar for all of the surfactants when recorded at 25 °C. Thus, one can conclude that a rigid spacer does not render the self-assembly of a gemini surfactant difficult, neither in bulk water nor at solid surfaces. However, on one of the surfaces-untreated gold-the adsorbed amount of the geminis with a rigid spacer at 40 °C was approximately twice the values obtained at 25 °C. This is interpreted as the formation of an interdigitated bilayer at 25 °C and a regular bilayer without interpenetration of the alkyl chains at 40 °C.  相似文献   

19.
The flocculation activity of commercially available anionic poly (acrylamide‐co‐acrylic acid), p (AAm‐co‐AA) has been significantly improved, without any inorganic coagulant aid. The effect of three types of surfactants, anionic sodium lauryl ether sulfate (SLES) (Palm Epimen), nonionic cocamide DEA, zwitterionic amphoteric Amphotensid B5, and one organic cation, trimethylammonium bromide (TAB) on coagulation/flocculation performance have been investigated. The performance has been analysed in terms of turbidity, total suspended solid (TSS), total iron (TI) content, and BTEX for treating two kinds of industrial wastewater, produced water (PW) and starch water. We have shown that adding a small amount of each of the studied surfactants, and especially cationic TAB, significantly increases the coagulation/flocculation performance without modifying pH levels. A combination of low dosage of flocculant (310 ppb) and TAB (310 ppb), after 5 minutes, presented 88%, 81%, and 62% reduction in turbidity, TSS, and TI content, respectively, whereas by using 5 ppm of flocculant alone (16 times more), only 76%, 75%, and 43% removal was obtained. The results reveal that TAB performs as an efficient coagulant booster. Compared with regular inorganic coagulants, it is more cost‐effective, reduces the consumption of treatment chemicals, and the pH‐dependency of contaminants removal.  相似文献   

20.
Isothermal titration calorimetry (ITC), surface tensiometry, and ultrasonic velocimetry were used to characterize surfactant-maltodextrin interactions in buffer solutions (pH 7.0, 10 mM NaCl, 20 mM Trizma base, 30.0 degrees C). Experiments were carried out using three surfactants with similar nonpolar tail groups (C12) but different charged headgroups: anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), and nonionic (polyoxyethylene 23 lauryl ether, Brij35). All three surfactants bound to maltodextrin, with the binding characteristics depending on whether the surfactant headgroup was ionic or nonionic. The amounts of surfactant bound to 0.5% w/v maltodextrin (DE 5) at saturation were < 0.3 mM Brij35, approximately 1-1.6 mM SDS, and approximately 1.5 mM DTAB. ITC measurements indicated that surfactant binding to maltodextrin was exothermic. Surface tension measurements indicated that the DTAB-maltodextrin complex was more surface active than DTAB alone but that SDS- and Brij35- maltodextrin complexes were less surface active than the surfactants alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号