首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The scattering of a plane electromagnetic wave by a perfectly conducting elliptic cylinder is investigated theoretically. The calculations are based upon the expansion of the scattered wave functions in terms of Mathieu functions. Both E- and H-polarized waves are considered. Numerical results, in particular for the scattering cross-section, are presented for cylinders the cross-sectional dimensions of which are up to many wavelengths (e.g. distance between the focal lines up to 20 wavelengths).  相似文献   

2.
The paper proposes an approximate solution describing a collision of an elastic finite-length cylinder with a rigid barrier when the lateral boundary conditions of the first fundamental problem of elasticity are satisfied. A finite-difference approach with respect to time and the integral transform method are used to reduce the original initial-boundary-value problem to a one-dimensional one. It is solved using the matrix Green’s function. The final expressions for displacements are obtained by solving a singular integral equation by the orthogonal-polynomial method. The values of displacements and strains are analyzed for short periods of time __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 74–82, September 2007.  相似文献   

3.
自由梁受集中质量两点撞击的刚塑性动力响应   总被引:3,自引:0,他引:3  
刘旭红  董军 《爆炸与冲击》2003,23(4):318-324
对矩形截面自由梁在两端同时受到完全相同的集中质量横向撞击问题进行了理论上的研究 ,通过采用刚塑性的材料模型得到了其动力响应完全解。结合数值方法给出了梁的瞬态变形 ,并讨论了输入能量、质量比等参数对梁的最终变形、能量耗散的影响。针对典型算例将完全解的结果与MSC/Dytran的计算结果进行了比较 ,两者具有合理的近似 ,但理论预测的结果略高估计了梁的最终变形。  相似文献   

4.
An important class of electromagnetic structures involves metallic sheets on the surface of a curved dielectric interface. At high frequencies, the behavior of such structures can be analyzed by the geometrical theory of diffraction (GTD) provided that the various wave and ray species excited by a single edge are known. This problem is addressed here by determining the line source Green's function for a thin perfectly conduvting half plane wrapped around a dielectric cylinder in an infinitely extended (nonperiodic) angular space. The formally exact solution is evaluated asymptotically to yield the GTD field in various ray-optical domains, with emphasis on those wave and ray species (creeping waves, whispering gallery modes, edge scattered fields, etc.) attributed to the presence of the edge. When the dielectric contrast is reduced to zero, all expressions are found to agree with those known for a curved sheet in a homogeneous medium.  相似文献   

5.
6.
This paper examines the three-dimensional problem of finding thermal stresses due to an insulated rigid sheet-like inclusion (anticrack) in an elastic space under a uniform perpendicular heat flow. By using appropriate harmonic potentials, a general method of solving this problem is presented. The resulting boundary-value problems are reduced to classical mixed problems of potential theory. For the purpose of illustration, a complete solution in terms of elementary functions for a rigid circularly shaped inclusion is given and discussed from the point of view of material failure.  相似文献   

7.
8.
The paper studies the interaction of a rigid spherical body and a cylindrical cavity filled with an ideal compressible fluid in which a plane acoustic wave of unit amplitude propagates. The solution is based on the possibility of transforming partial solutions of the Helmholtz equation between cylindrical and spherical coordinates. Satisfying the interface conditions between the cavity and the acoustic medium and the boundary conditions on the spherical surface yields an infinite system of algebraic equations with indefinite integrals of cylindrical functions as coefficients. This system of equations is solved by reduction. The behavior of the system is studied depending on the frequency of the plane wave  相似文献   

9.
This work investigates the pressure amplification experienced behind a rigid, porous barrier that is exposed to a planar shock. Numerical simulations are performed in two dimensions using the full Navier–Stokes equations for a M = 1.3 incoming shock wave. An array of cylinders is positioned at some distance from a solid wall and the shock wave is allowed to propagate past the barrier and reflect off the wall. Pressure at the wall is recorded and the flowfield is examined using numerical schlieren images. This work is intended to provide insight into the interaction of a shock wave with a cloth barrier shielding a solid boundary, and therefore the Reynolds number is small (i.e., Re = 500 to 2000). Additionally, the effect of porosity of the barrier is examined. While the pressure plots display no distinct trend based on Reynolds number, the porosity has a marked effect on the flowfield structure and endwall pressure, with the pressure increasing as porosity decreases until a maximum value is reached.   相似文献   

10.
11.
12.
The dynamics of non-smooth oscillators has not yet sufficiently been investigated, when damping is simultaneously due to friction and impact. Because of the theoretical and practical interest of this type of systems, an effort is made in this paper to lighten the behaviour of a single-degree-of-freedom oscillator colliding with an obstacle and excited by a moving base, which transfers energy to the system via friction. The different nature of discontinuities arising in the combined problem of friction and impact has been recognized and discussed. Closed-form solutions are presented for both transient and steady-state response, assuming Coulomb's friction law and a rigid stop-limiting motion. Furthermore, a deformable (hysteretic) obstacle has been considered, and its influence on the response has been investigated.  相似文献   

13.
14.
In order to analyze the intensity of the circulating flow in the rarefaction zone near the axis of a rapidly rotating cylinder, the problem of gas flow in a cylinder with a stationary upper end face is solved for intermediate Knudsen numbers by the direct statistical modeling method. The effect of the rarefaction of the gas on the intensity of the secondary flow is investigated. The contribution of the self-excited thermal circulation of the gas to the total circulating flow is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 186–188, May–June, 1990.  相似文献   

15.
The nonstationary problem on the axisymmetric antiplane deformation of a hollow cylinder due to a longitudinal impact on the end of the rigid cylindrical shell is considered. The solution of the boundary-value problem is reduced to a system of Volterra integral equations of the second kind. A numerical analysis is carried out and its results are plotted. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 5, pp. 98–102, May, 2000  相似文献   

16.
The axisymmetric contact problem of a rigid punch indentation into an elastic circular plate with a fixed side and a stress-free face is considered. The problem is solved by a method developed for finite bodies which is based on the properties of a biorthogonal system of vector functions. The problem is reduced to a Volterra integral equation (IE) of the first kind for the contract pressure function and to a system of two Volterra IE of the first kind for functions describing the derivative of the displacement of the plate upper surface outside the punch and the normal (or tangential) stress on the plate lower fixed surface. The last two functions are sought as the sum of a trigonometric series and a power-law function with a root singularity. The obtained ill-conditioned systems of linear algebraic equations are regularized by introducing small parameters and have a stable solution. A method for solving the Volterra IE is given. The contact pressure functions, the normal and tangential stresses on the plate fixed surface, and the dimensionless indentation force are found. Several examples of a plane punch computation are given.  相似文献   

17.
Two mixed elasticity problems of punch indentation into a circular plate placed without clearance in a rigid cylindrical holder with smooth walls are considered. In the first problem, the plate lies without friction on a rigid base, and in the second problem, the plate is rigidly fixed to the base. The problems are solved by a method that was developed for bodies of finite dimensions and is based on the properties of closed systems of orthogonal functions. Each of the problems is reduced to two integral equations, namely, a Volterra integral equation of the first kind for the contact pressure function and a Fredholm integral equation of the first kind for the derivatives of the displacement of the plate upper surface outside the punch. The displacement function is sought as the sum of a trigonometric series and a power function with a root singularity. After truncation, the obtained illposed system of linear algebraic equation has a stable solution. A method for solving Volterra integral equations is given. The contact pressure distribution function and the dimensionless indentation force are determined. Examples of calculation of the plate interaction with the plane punch are given. Contact problems were earlier studied for a rectangle and a circular plate with a stress-free end both without taking account of their fixation [1, 2] and with regard for their fixation [3, 4]. The solution method described here was used to study the interaction of elastic hollow cylinder of finite length with a rigid bandage and a rigid insert [5, 6]. Other papers dealing with contact problems for bodies of finite dimensions, in particular, for a circular plate, should also be mentioned. In these papers, the problems under study were solved by the method of homogeneous solutions [7, 8] and by the method of coupled series-equations [9].  相似文献   

18.
Leningrad University. Translated from Prikladnaya Mekhanika, Vol. 25, No. 12, pp. 10–19, December 1989.  相似文献   

19.
20.
Based on experimental data and numerical modeling, it is shown that a lamina of melted metal of thickness of order0.01 d, in which the temperature is close to the melting point of the particle material, can be formed upon high-speed impact (v 0≈500–1200 m/sec) of a fine metal particle (d=1–50 μm) on a rigid undeformable barrier near the contact surface. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 204–209, January–February, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号