首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Surface science》1986,176(3):669-678
We investigate theoretically the optical and electrical properties of parabolic semiconducting quantum well structures. In our calculations, we assume that the confinement of the carriers is in an infinite parabolic well. We show that the carrier mobility in the plane perpendicular to the direction of confinements is directly proportional to the harmonic oscillator length λ whose value depends upon the partitioning of the band gap discontinuity between the conduction and valence bands. We have also calculated the linewidth for intra-subband resonances which should occur for electromagnetic radiation polarized in the direction of carrier confinement and show that the linewidth is inversely proportional to λ and directly proportional to the temperature when the linewidth is dominated by acoustic phonon scattering. The absorption coefficient for interband optical transitions shows equally spaced steps as a function of photon energy where the value of the spacing between adjacent steps depends upon the partitioning of the band gap discontinuity. Carrier freeze-out in the intrinsic conduction occurs due to the presence of zero point energies in the conduction and valence bands arising from the carrier confinement. These zero point energies also are found to depend upon the partitioning of the band gap discontinuities. Therefore, information about the partitioning of the energy band gap discontinuity between the conduction and valence bands can be obtained by measuring these various optical and electrical transport properties of a parabolic quantum well semiconducting structure under those conditions when the model of an infinite parabolic well approximates the real system.  相似文献   

2.
In this article we review the experimental and theoretical investigations of the linear and nonlinear optical properties of semiconductor quantum well structures, including the effects of electrostatic fields, extrinsic carriers and real or virtual photocarriers.  相似文献   

3.
4.
5.
Linear and nonlinear light propagation in single and multiple quantum wells and in semiconductor microresonators are studied on the basis of Maxwell’s equations. The treatment includes radiative broadening of quantum-confined excitons, radiative coupling between quantum wells as well as coupling of quantum wells to the cavity field of a microresonator for steady state or ultrashort pulse excitation. The dynamical evolution of the coherent quantum-well polarization under the influence of many-body effects is studied within a microscopic model. The theory is used to investigate the influence of exciton saturation and dephasing on pulse propagation and excitonic normal-mode coupling.  相似文献   

6.
In a three-level asymmetric semiconductor quantum well system, owing to the effects that result from the incoherent pumping fields, we find that the electron population, absorption and dispersion properties can be efficiently controlled. The results are achieved by applying the two incoherent pumping fields, so they are very different from the conventional schemes that coherent driving fields are used to control the optical properties and electron population. Thus, it may provide some new possibilities for technological applications in solid-state optoelectronics science.  相似文献   

7.
Ultrastrong coupling is studied in a modulation-doped parabolic potential well coupled to an inductance-capacitance resonant circuit. In this system, in accordance to Kohn's theorem, strong reduction of the energy level separation caused by the electron-electron interaction compensates the depolarization shift. As a result, a very large ratio of 27% of the Rabi frequency to the center resonance frequency as well as a polariton gap of width 2π × 670 GHz are observed, suggesting parabolic quantum wells as the system of choice in order to explore the ultrastrong coupling regime.  相似文献   

8.
9.
10.
Nonlinear optical properties of semiconductor quantum wires   总被引:1,自引:0,他引:1  
Nonlinear optical transmission at discrete frequencies (bleaching bands) has been observed in CdSe and GaAs quantum wires crystallized in chrysotile asbestos nanotubes with average diameter ≈ 6 nm and in nanocrystals of CdS (crystallized in the transparent molecular filter—mica with empty channels of designed diameter). The induced decrease of absorption in quantum wires has been explained by filling of the size-quantized energy bands with nonequilibrium carriers (saturation effect) and by the phase-space filling of excitons.  相似文献   

11.
12.
13.
14.
The exciton wavefunction in parabolic quantum wells is calculated using variational techniques and effective mass theory. The influences of the potential shape and of confinement on the exciton binding energies are studied. The results are in good agreement with previous calculations. The oscillator-strength of excitons in GaAs/Ga1-xAlxAS quantum wells has a maximum value very close to the cross-over from three to two dimensions.  相似文献   

15.
利用半导体布洛赫方程,讨论了量子阱在沿其平面方向偏振的太赫兹场驱动下的光学吸收谱。研究结果揭示了半导体量子阱在沿平面方向偏振的强太赫兹场驱动下吸收谱的一些新奇效应,如主吸收的太赫兹边带、动态弗兰兹-凯尔迪什效应。太赫兹场的频率及其相位对探测场吸收谱的影响也很显著。  相似文献   

16.
利用半导体布洛赫方程,讨论了量子阱在沿其平面方向偏振的太赫兹场驱动下的光学吸收谱。研究结果揭示了半导体量子阱在沿平面方向偏振的强太赫兹场驱动下吸收谱的一些新奇效应,如主吸收的太赫兹边带、动态弗兰兹-凯尔迪什效应。太赫兹场的频率及其相位对探测场吸收谱的影响也很显著。  相似文献   

17.
Ultrafast modulation of interband-resonant light by intersubband-resonant light in n-doped GaAs/AlGaAs and GaN/AlGaN quantum wells was investigated by femtosecond pump-probe technique. A planar-type AlGaAs/GaAs modulation device shows a modulation speed of ~1 ps at room temperature. The observed modulation efficiency indicates that 99% modulation can be achieved with a control pulse energy of ~1 pJ when a waveguide-type device structure is utilized. The feasibility of the all-optical modulation in GaN/AlGaN quantum wells is also investigated. The intersubband carrier relaxation time, which mainly determines the modulation speed, is measured and is found to be extremely fast (130–170 fs). The results indicate that the optical modulation at a bit rate of over 1 Tb/s will be possible by utilizing the intersubband transition in GaN/AlGaN quantum wells. The modulation efficiency in GaN/AlGaN quantum wells is also discussed in comparison with that in GaAs/AlGaAs quantum wells.  相似文献   

18.
An extremely broad emission spectrum is obtained for semiconductor optical amplifiers with multiple quantum wells fabricated on the substrate. The spectral width is nearly 400 nm (1200–1600 nm), which covers the entire usable bandwidth of an optical fiber. Broadband characteristics allow observing three novel effects: (i) the bi-directional guided effect of lasing mode in a bent waveguide of semiconductor optical amplifiers, (ii) the optical switching effect in one semiconductor optical amplifier for optical communication band, and (iii) the effect of separate confinement heterostructure layer thickness.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号