首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Camley RE  Li D 《Physical review letters》2000,84(20):4709-4712
The temperature dependence of the magnetization in fcc Fe on Cu(100) is calculated using a self-consistent local mean-field theory. The model reproduces an experimental magnetization oscillation as a function of film thickness and supports a picture where the top two layers are ferromagnetically coupled, and the remaining layers are antiferromagnetically coupled. The origin of the puzzling linear temperature dependence in oscillation amplitude is understood as a "surface phenomena" of the antiferromagnetic layer at the Fe/Cu interface. Proximity effects between a thin antiferromagnet with a low Neel temperature and a neighboring ferromagnet with a higher Curie temperature are discussed.  相似文献   

4.
Very thin Fe films have been grown by molecular beam epitaxy on Ge(001), GaAs(001) and ZnSe(001) substrates, under identical preparation conditions. The electronic and magnetic properties of such interfaces have been studied, as a function of the Fe thickness, by means of spin resolved inverse photoemission. From the spin dependence of Fe empty states, we observe the onset of room temperature ferromagnetism to occur at a Fe thickness as low as three monolayers (ML) for Fe/Ge, while 5 and 8 ML have been found for Fe/GaAs and Fe/ZnSe, respectively.  相似文献   

5.
Application of conversion electron Mössbauer spectroscopy (CEMS) to structural and magnetic analysis of ultrathin films and their interfaces is reviewed. Fe(110) films were prepared on W(110) under UHV conditions and analyzed in situ. CEMS provides detailed information on the mode of growth and film structure and on magnetic hyperfine fields, B hf. Local structure of B hf across the film is discussed in relation to modifications of magnetic order caused by the finite (including monolayer) film thickness and by the electronic structure of the interface.  相似文献   

6.
7.
The domain walls in ultrathin ferromagnetic films with uniaxial magnetic anisotropy are investigated theoretically. It is shown that taking account of the magnetodipole and magnetoelastic interactions leads to the appearance of an effective anisotropy with respect to the direction of the normal to the plane of the wall. The existence of a new type of domain walls—“corner” walls, at which the magnetization vector is rotated in the plane making a certain angle, which depends on the film parameters, with the plane of the domain wall and the static and dynamic properties of these walls are investigated. The dependence of the limiting velocity of the domain walls on the film thickness is found. Zh. éksp. Teor. Fiz. 112, 1476–1489 (October 1997)  相似文献   

8.
We discuss the magnetostatic energy of checkerboard domain structures in ultrathin magnetic films (of a few monolayer thickness) and in an atomic monolayer using simple magnetostatic considerations where the easy direction of magnetization is perpendicular to the film. The checkerboard domain size, D, the domain-wall width, ω, the ratio f of the uniaxial surface anisotropy, Ks, to the dipolar energy and the binding energy, (BE), have been calculated numerically with the variational parameter δ and the number of atomic layers, nl, as parameters.  相似文献   

9.
10.
11.
The remagnetization time of thin magnetic fields for remagnetization along the axis of hard magnetization has been calculated on a computer. It is found that the magnetic moment may flip from a position along the axis of easy magnetization to the opposite direction under the influence of a pulsed magnetic field along the axis of hard magnetization.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vo. 12, No. 3, pp. 104–107, March, 1969.The author thanks G. M. Rogichev for discussion of and assistance in this study.  相似文献   

12.
We describe the construction and operation of an ultrahigh-vacuum system devoted to the study of thin film magnetism. The apparatus includes a growth chamber, where ultrathin films are deposited by molecular beam epitaxy, and a measurement chamber, where they are analyzed by a variety of electron spectroscopies. The electron spin can be controlled by using a fully characterized spin resolved electron gun and polarization analyzers. Test measurements on in situ grown Fe/MgO(001) samples are also presented as illustration of the system performances.  相似文献   

13.
14.
15.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

16.
The oxidation characteristics of silicon implanted with a low dose of nitrogen (1–3×1015cm–2) have been studied for dry oxidation conditions at 1020°C. The wafers were subjected to a pre-oxidation annealing. Complete inhibition of the oxide growth occurs in the initial stage of oxidation, while the oxidation rate for prolonged oxidation is identical to that for pure silicon. The oxidation resistance increases with the implantation dose. The resistance is attributed to the formation of a nitrogen-rich surface film during annealing. This layer, which consists of only a few monolayers, is presumably composed of oxynitride. The electrical characteristics of MOS capacitors formed on implanted wafers show that the interface state density is not significantly increased by the low-dose N implantation.  相似文献   

17.
Spin- and angle-resolved photoemission show that a very similar development of the electronic structure occurs in fcc Fe films grown on Co(100) and on Cu(100). On both substrates the electronic structure displays distinct changes as a function of the thickness which correlate with the magnetic properties of the film. The measurement of the photoelectron spin polarization demonstrates that the surface region of Fe films on Co(100) as well as on Cu(100) is magnetically alive at all thicknesses.  相似文献   

18.
In ultrathin films, due to the thermal activation and temperature dependencies of the magnetic parameters, magnetization reversal processes are strongly affected by thermal effects. We analyze changes of domain periods of ultrathin cobalt and L10L10 films in a wide temperature range. With regard to the temperature dependencies of the film magnetic parameters we calculate the equilibrium stripe period as a function of temperature. It is shown that on film heating the equilibrium domain structure (DS) period decreases and at the reorientation phase transition (RPT) approaches its minimal value corresponding to the temperature independent period of the sinusoidal domain structure. Just below the RPT temperature (or thickness) the stripe domain period was found to exponentially decrease with temperature. Irreversible temperature changes of the domain period affected by coercivity are also discussed.  相似文献   

19.
The longitudinal generalized magneto-optical ellipsometry(GME) method is extended to the measurement of threelayer ultrathin magnetic films. In this work, the theory of the reflection matrix is introduced into the GME measurement to obtain the reflective matrix parameters of ultrathin multilayer magnetic films with different thicknesses. After that, a spectroscopic ellipsometry is used to determine the optical parameter and the thickness of every layer of these samples, then the magneto-optical coupling constant of the multilayer magnetic ultrathin film can be obtained. After measurements of a series of ultrathin Fe films, the results show that the magneto-optical coupling constant Q is independent of the thickness of the magnetic film. The magneto-optical Kerr rotations and ellipticity are measured to confirm the validity of this experiment. Combined with the optical constants and the Q constant, the Kerr rotations and ellipticity are calculated in theory. The results show that the theoretical curve fits very well with the experimental data.  相似文献   

20.
Stress measurements with sub-monolayer sensitivity are performed to investigate the correlation between mechanical film stress and magneto-elastic anisotropy in epitaxial ferromagnetic monolayers. The magneto-elastic coupling B1 of Fe(1 0 0) films is measured directly. Magnitude and sign of B1 deviate from the respective bulk value. A strain-dependent correction of the magneto-elastic coupling coefficient B1 describes the apparent thickness dependence of B1 for film thicker than 10 nm. For thinner films, the possible contribution of surface corrections is discussed to explain the almost constant B1. The implications of a modified magneto-elastic coupling for the anisotropy of ultrathin films is elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号