首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growing curve of light-induced dangling bonds under illumination has been observed for various intensities of illumination in a-Si:H. It is fitted to a stretched exponential function and then two parameters β and τ involved in the function are estimated as a function of saturated dangling bond density . The experimental values of β, τ, and are compared with those calculated based on our model of light-induced defect creation in a-Si:H.  相似文献   

2.
The thermal relaxation kinetics of light-induced metastable defects in a-Si:H was studied prior to and after partial relaxation in the dark and in a dim light. The film lighting was found to change the relaxation rate of the defects and their distribution in relaxation time. This was demonstrated to be due to the concurrent light-induced relaxation and formation of the defects.  相似文献   

3.
We have investigated the effect of the deposition temperature (i.e. the hydrogen content) on the light-induced effects in undoped hydrogenated amorphous silicon (a-Si:H). Combined junction capacitance-temperature (C-T), ESR and IR absorption measurements are carried out in both the dark annealed state (A) and the saturated light-soaked state (B), as well as after partial annealing of the samples, starting from state B. The experimental results indicate that the films deposited at the highest substrate temperature (i.e. the lowest H content) exhibit a completely different behaviour from those deposited at lower substrate temperature (i.e. with higher H concentration), when the samples are left for long times at room temperature in the dark after partial annealing. These results are discussed in detail in relation to the different models proposed to explain the light-induced effects in a-Si:H.  相似文献   

4.
The quantum efficiency (QE) of light-induced metastable defect creation in hydrogenated amorphous silicon (a-Si?:?H) and amorphous As2Se3 (a-As2Se3) by bandgap and subgap illumination has been deduced from photocurrent measurements. The QE decreases with increasing number of absorbed photons. A higher QE for a-As2Se3 than for a-Si?:?H has been observed and this is interpreted in terms of the higher structural flexibility of a-As2Se3. We have also found that, for both materials, subgap illumination yields a higher QE than does bandgap illumination.  相似文献   

5.
6.
7.
Nanoindentation was carried out on thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition. The composite values of elastic (Young's) modulus, E c, and hardness, H c, of the film/substrate system were evaluated from the load–displacement curves using the Oliver–Pharr approach. The film-only parameters were obtained employing the extrapolation of the depth profiles of E c and H c. Scanning probe microscopy was employed to image the nanoindenter impressions and to estimate the effect of film roughness and material pile-up on the testing results. It was established that the elastic modulus of thin a-Si:H films is in the range 117–131 GPa, which is lower than for crystalline silicon. In contrast, the values of hardness are in the range 12.2–12.7 GPa, which is comparable to crystalline silicon and higher than for hydrogen-free amorphous silicon. It is suggested that the plastic deformation of a-Si:H proceeds through plastic flow and it is the presence of hydrogen in the amorphous matrix that leads to a higher hardness.  相似文献   

8.
A direct evidence of substitutional doping in ion beam deposited amorphous hydrogenated silicon by nitrogen is presented. From the analysis of infrared (IR) absorption spectra and Si-2p core level shape, measured with X-ray photoelectron spectroscopy (XPS), the preferential tendency of nitrogen to go in for three-fold coordination at higher concentration and tetrahedral bonding at lower concentration (⩽4 at %) is established. XPS technique has been used for the first time to deduce the upper limit for substitutional solid solubility of the impurity.  相似文献   

9.
The persistent photoconductivity (PPC) has been observed in undoped, phosphorus-doped, and boron-doped hydrogenated amorphous silicon (a-Si: H) films. As the annealing temperature is raised for these films the decay of residual conductivity is accelerated and the PPC disappears almost completely after annealing at 500°C. These experimental results rule out the mechanism requiring the phosphorus-boron complexes or the deep defects. The PPC is found to be related with the sample inhomogeneity from the experimental observation that the decay of residual conductivity is closely correlated with the microstructure. A model is proposed to explain the PPC in a-Si: H films.  相似文献   

10.
11.
We use the results of time-of-flight experiments in conjunction with recent conclusions about the behavior of the density of localized states below the conduction-band mobility edge to calculate the mobility of electrons moving in extended states in a-Si:H. We find that the extended-state mobility is considerably larger than previous estimates, which were based on the assumption that the exponential behavior responsible for dispersive transport extends all the way to the mobility edge. Using a recent estimate for the density of localized states, we find that the extended state mobility in a-Si:H is about 500 cm2/V-s, a value consistent with the results deduced from high-level injection experiments on p-i-n structures.  相似文献   

12.
The extra-mode at 214 cm-1 which is observed in the infrared spectrum of hydrogenated amorphous silicon is interpreted as being due to the presence of small (? 7 atoms) internal surfaces in the samples. Calculations of the phonon density of states at internal surfaces in bulk Si Bethe lattices show a pronounced peak at the edge of the TA band (≈ 210 cm-1. It is shown that when hydrogen is present the mode is infrared active through a dynamical charge transfer mechanism.  相似文献   

13.
Hydrogenated amorphous silicon exhibits efficient optical transitions across a gap larger than that of crystalline Si. Hydrogen passivates the dangling bonds and endows the material with a reduced number of non-radiative recombination centers. A gap widening has been observed in other hydrogenated semiconductors.Research reported herein was supported by the Department of Energy, Division of Solar Technology, under Contract No. EY-76-C-03-1286 and by RCA Laboratories, Princeton, NJ 08540.  相似文献   

14.
Field quenching phenomena were observed in the photo-induced changes in dark current—voltage and dark low frequency capacitance-voltage characteristics of hydrogenated amorphous silicon (a-Si:H) diodes. The photo-induced changes in photoconductivity of undoped a-Si:H measured in coplanar type samples also depended on the externally applied electric field. The mechanisms of the field quenching were discussed referring to trapping and/or recombination of photogenerated carriers in a-Si:H.  相似文献   

15.
Ranber Singh  S. Prakash 《Pramana》2003,61(1):121-129
The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si-H bond and breaks the weak (strained) Si-Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.  相似文献   

16.
The thermal conductivity of amorphous silicon thin films is measured in one dimension steady state condition. The experimental method is based on heating the sample front surface and monitoring the temperatures at its two sides. The experiments were carried out in conditions ensuring one-direction heat flow from top to bottom throughout the sample thickness. Sputtered a-Si:H films prepared with different conditions are used in order to investigate the dependence of thermal conductivity on material properties (i.e. hydrogen content and microstructure). The results show that, firstly, amorphous silicon is a very bad thermal conductor material. Secondly, the disorder in the film network plays an important role in thermal conduction. The highly disordered film exhibits the lowest thermal conductivity.  相似文献   

17.
Hydrogenated amorphous silicon surfaces, atomically clean and subsequently oxidized to up to 20 Å oxide thickness, were studied using AES and UPS. The oxidation was made in O2 in the pressure range 10?9 Torr to 5 atm and at 23 and 300°C. The oxidation rate at 23°C was found to be the same as that of crystalline silicon while at 300°C it was appreciably faster. Changes in the d N(E)dE AES Si LVV line shape near 80 eV upon oxidation could be correlated to changes in the silicon-oxygen bonding level observed in UPS. The detailed line shape of the AES Si LVV transition indicates that at 300°C a more homogeneous oxide is produced than at 23°C.  相似文献   

18.
Space-charge-limited currents in n+-i-n+ sandwich samples of hydrogenated amorphous silicon have been investigated under alternating current (AC) conditions. When the voltage sweeping rate exceeds the release rate of carriers from deep traps, the AC current-voltage characteristics differ markedly from the direct current (DC) characteristics. This is attributed to the remaining space charge in the samples which acts as a potential barrier and reduces the current. A simple model is proposed to describe the time-dependence of this injection-induced barrier.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号