首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An equimolar mixture of poly(L-lactide) and poly(D-lactide) was crystallized into a stereocomplex whose crystal system is triclinic (P1) with cell dimensions: a = 0.916 nm, b = 0.916 nra, c (chain axis) = 0.870 nm, α = 109.2°, β - 109.2°, and γ = 109.8°. In the unit cell, a poly(L-lactide) segment and a poly (D-lactide) segment are contained as a pair and packed laterally in parallel fashion. The L- and D-poly(lactides) in the complex take a 31 helical conformation, which is a little extended from a 103 helix in the homopolymer crystal with the α-form. Homopolymers are also able to take the 31 helical conformation and form the β-form crystal. The 31 helix in the homopolymer crystal is less stable than the 103 one, and hence the β-form is easily transformed to the α-form by annealing.  相似文献   

2.
A series of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) composite thin films with prescribed concentrations of poly(ethylene glycol) were prepared. The PEDOT–PSS pristine film and PEDOT–PSS/PEG films were studied using four-probe method, photoelectron spectroscopy and atomic force microscopy. The electrical conductivity of PEDOT–PSS/PEG hybrid films was found to be enhanced compared to the PEDOT–PSS pristine film, depending on the PEG concentration and molecular weight. XPS analysis and AFM results showed that PEG induces the phase separation between the PEDOT–PSS conducting particles and the excessive PSSNa shell. Simultaneously PEG may form hydrogen bond with sulfonic groups of PSSH, and hence weaken the electrostatic interactions between PEDOT cationic chains and PSS anionic chains. These resulted in the creation of a better conduction pathway among PEDOT–PSS particles, attributed to the improvement of conductivity.  相似文献   

3.
基于三链核酸 poly(U)· poly(A)·poly(U)的螺旋对称性 ,利用晶格动力学方法 ,计算了三链核酸分子 poly(U)·poly(A)·poly(U)主链振动的本征矢 ,探讨了振动位移矢量和线二色光谱的关系。结果表明 ,对应着磷酸双氧的反对称振动谱线可以用于直接确定磷酸根的取向 ,精度大约为 1°。其他谱线必须通过对分子的简正分析来帮助确定分子的结构。  相似文献   

4.
The formation of collagen fibrils in poly(vinyl alcohol) (PVA) and in poly(vinyl pyrrolidone) (PVP) was investigated using Atomic Force Microscopy (AFM). The water solutions of PVA and PVP containing 1%, 3% and 5% of collagen were cast onto glass plate. After slow solvent evaporation thin polymeric films were obtained. AFM images showed the fibril formation in both, PVA and PVP films containing collagen. The amount of collagen in PVA and PVP matrix has an important effect on the structure and size of collagen fibril formed. The diameter of collagen fibrils in PVA films is bigger than the diameter of collagen fibrils formed in PVP films.  相似文献   

5.
6.
Poly(2-ethynyl-N-hexylpyridinium bromide) and poly(2-ethynyl-N-hexylpyridinium iodide) were synthesized by the direct polymerization of 2-ethynylpyridine and the corresponding n-hexyl halides without any additional initiator or catalyst under mild reaction condition. The polymerization proceeded well to give high yield of polymer. The polymer structures were characterized to have the conjugated polymer backbone system having N-hexylpyridyl moieties. The photoluminescence spectra of poly(2-ethynyl-N-hexylpyridinium bromide) and poly(2-ethynyl-N-hexylpyridinium iodide) showed that the photoluminescence peaks are located at 603 and 611 nm corresponding to the photon energy of 2.06 and 2.03 eV, respectively. The electrochemical properties of the resulting polymers were also measured and discussed.  相似文献   

7.
三螺旋DNA分子poly(dT)·poly(dA)·poly(dT)的构型和振动谱   总被引:4,自引:0,他引:4  
我们计算了poly(dT)·poly(dA)·poly(dT)的Howard模型的原子笛卡尔坐标,并利用晶格动力学方法对模型进行了简正分析。结果发现其0 P 0对称振动模式位于804cm-1,这和810cm-1附近没有拉曼和红外谱线的实验结果不符。在800~1000cm-1的范围内只有四个振动模式,明显少于拉曼和红外光谱在该范围内的谱线数目。所以我们认为Howard模型需要进一步地完善和修正,poly(dT)·poly(dA)·poly(dT)必须具有三条不完全一致的脊骨  相似文献   

8.
We numerically investigate quantum diffusion of an electron in a model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with fluctuation of the parameters due to the impact of colored noise. The randomness is introduced by fluctuations of distance between two consecutive bases along the stacked base pairs. We demonstrate that in the model the decay time of the correlation can control the spread of the electronic wavepacket. Furthermore it is shown that in a motional narrowing regime the averaging over fluctuation causes ballistic propagation of the wavepacket, and in the adiabatic regime the electronic states are affected by localization.  相似文献   

9.
Low-temperature (77–300 K) RadioThermoLuminescence (RTL) investigations of Poly(Tetra FluoroEthylene) (PTFE) and Poly(Ethylene TerePhthalate) (PET) foils previously treated by different flux (Φ = 106–1011 cm−2) of Xenon ions with energy 1.1 MeV/nucleon have been showed an essential ion-induced changes in RTL of the both polymers under study. In PET as well as in PTFE significant changes of RTL light yield observed at the ion flux more than 109 cm−2. Variation of RTL light yield in PTFE accompanied by appearance of new TL temperature maxima on the glow curve. An existence of correlation between observed changes of molecular mobility in ion-irradiated polymer and optical (PET) and strength (PTFE) properties have been found.  相似文献   

10.
The ionic conductivity of poly(ethylene oxide) and poly(propylene oxide) in pure solution form, individually complexed with salts of Na+ and Li+, with and without plasticizer (propylene carbonate) and in blended form with individual salt with and without plasticizer, was studied. The conductance measurements were made at various concentrations of salt polymer complexes and at different temperatures. The effects of temperature and plasticizer concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The plasticizer has also same effect. The blending of PEO with PPO gives enhanced conductivity as compared to pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreases with the addition of Li and Na salts and further decreases with the addition of plasticizer. The blending has also lowered the activation energy values which mean that incorporation of PPO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies.  相似文献   

11.
Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.  相似文献   

12.
Summary The phase diagram of the ternary system,i.e. poly(diallyldimethylammonium chloride), poly(acrylic acid, sodium salt), and water was investigated by varying the molecular weight of the components. In general, a range of phase separation is surrounded by a one-phase system. The range of phase separation can be subdivided into a region of flocculation and/or coacervation in contrast to stable symplex dispersions. By increasing the molecular weight of the components the range of phase separation is increased and phenomena of flocculation followed by coacervation were observed predominantly. Above a molecular weight of 10 000 g/mol the transition to concentrated macroscopic homogeneous one-phase systems was observed at a constant ionic strength of 2 mol/l coinciding with the ?critical ionic strength? for Coulombic interactions in this system. That means the transition to concentrated one-phase systems can be understood by the disappearance of Coulombic forces above a system-specific ionic strength resulting in a quite additive behaviour of the mixtures with regard to the components. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

13.
Deformability of poly(amidoamine) dendrimers   总被引:1,自引:0,他引:1  
Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.PACS: 81.07.Nb Molecular nanostructures - 82.20.Wt Computational modeling; simulation - 68.37.Ps Atomic force microscopy (AFM)  相似文献   

14.
Recurrence relation for the cardinalities of linear and cylindrical poly(p-phenylene) (PPP) compounds has been developed that requires the cardinalities of two of their immediate lower homologues. Such recurrence relation reduces into analytical expressions for the cardinalities under transfer matrix formalism. Ambient condition density and bulk modulus of linear PPPs are found to bear excellent linear correlation with the inverse of logarithm of their cardinalities. Topological bond orders obtained from the cardinalities of such PPPs have been found to have good linear correlations with the respective Hückel bond orders.  相似文献   

15.
A review of data on the thermo, photo-, and biodegradation of compositions of synthetic polymers with poly-3-hydroxybutyrate and poly(lactic acid) is presented. The influence of these polymers on the thermal, microstructural, and rheological properties of mixtures is examined. The destruction of pure biopolymers, as well as compositions thereof with polyethylene, poly-(3-hydroxybutyrate-co-3-hydroxyvalerate), and polycaprolactone is studied.  相似文献   

16.
Proton-conducting properties of the graft copolymer electrolytes were examined throughout this work. The homopolymers poly(glycidyl methacrylate), PGMA and poly(vinyl phosphonic acid), PVPA were synthesized by free-radical polymerizations of the monomers glycidyl methacrylate, GMA, and vinyl phosphonic acid, VPA, respectively. The graft copolymers were produced by grafting of PVPA onto PGMA via ring opening of ethylene oxide groups. To examine the influence of the concentration of VPA on the proton conductivity, several graft copolymers were produced at various stoichiometric ratios with respect to monomer repeat units. The materials were characterized by FT-IR and 1H NMR spectroscopy and the thermal properties were studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TGA results demonstrated that the samples are thermally stable up to at least 150 °C. The proton conductivities of humidified and dry samples were studied via impedance spectroscopy. In the anhydrous state, the proton conductivity of P(GMA)-graft-P(VPA)10 was 5 × 10? 5 S/cm at 150 °C. The proton conductivity of the same material increased with the humidity content and reached to 0.03 S/cm at 80 °C under 50% of RH, which approached to that of Nafion® at the same humidification level.  相似文献   

17.
Porous interpolymer anion exchange membranes were prepared from poly-(vinylidene fluoride) and poly(l-vinyl-3-methylimidazolium iodide). Depending on the membrane composition, the hydraulic permeability and the membrane conductance were varied over four orders of magnitude. The rejection of potassium chloride, calcium chloride, and methylene blue solutions was determined during ultrafiltration. A model was developed to account for the observed salt rejection. The membrane porosity and tortuosity parameters for this interpolymer membrane system were compared with an analogous system of cation-exchange membranes derived from poly(styrenesulfonic acid) and poly(vinylidene fluoride).  相似文献   

18.
The combination of a poly(ethylene glycol) (PEG) network and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) copolymer chains is one of the most efficient means for modifying PVDF-HFP gel electrolytes. Previous preparations tend to introduce contamination into the polymer gel electrolyte because of irradiation, high temperature or the initiator needed for crosslinking which might result in the electrochemical degradation. In order to overcome the above disadvantages, a new method has been developed to successfully prepare the semi-interpenetrating polymer networks of PVDF-HFP based electrolytes with crosslinked diepoxy polyethylene glycol (DIEPEG). In this process, impurities are avoided because of a moderate reaction temperature at 50 °C and poly(ethylenimine) (PEI) as the crosslinking agent. Microporous films with various compositions are prepared and characterized. Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes have been investigated using thermogravimetric analysis, electrochemical impedance spectroscopy, linear sweep voltammetry, and scanning electron microscopy. The results show that the blend polymer electrolyte with PVDF-HFP/PEI + DIEPEG (60:40 w/w) has an ionic conductivity of 2.3 mS cm? 1 at room temperature in the presence of 1 M LiPF6 in EC and DMC (1:1 w/w). All the blend electrolytes are electrochemically stable up to 4.8 V versus Li/Li+. The results reveal that this new method may be very promising for improving PVDF-HFP based electrolytes.  相似文献   

19.
20.
Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine   总被引:1,自引:0,他引:1  
Poly(amidoamine) (PAMAM) dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides, and antibodies. Amine‐terminated PAMAM dendrimers are able to solubilize different families of hydrophobic drugs, but the cationic charges on dendrimer surface may disturb the cell membrane. Therefore, surface modification by PEGylation, acetylation, glycosylation, and amino acid functionalization is a convenient strategy to neutralize the peripheral amine groups and improve dendrimer biocompatibility. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Biodegradability, non-toxicity, non-immunogenicity, and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers in biomedical fields as dendrimer-based nanomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号