首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the production of pyrimidine dimers by UV radiation in different intracellular forms of simian virus 40 DNA. Virus and chromatin or previrions were selectively labeled with [l4C]-thymidine and [3H]-thymidine, respectively, in the same monolayer of infected cells. Viral DNA was extracted immediately after irradiation, and pyrimidine dimers were detected as sites sensitive to the UV-endonuclease encoded by bacteriophage T4. No difference in the number of dimers introduced into chromatin, previrions. or virions was detected.  相似文献   

2.
Abstract Direct determination has been made of cyclobutyl pyrimidine dimer induction and excision repair in an episomal SV40 DNA population in vivo . Maintaining SV40-transformed human (GM637) cells in confluent culture results in amplification of a mutant SV40 episome to high copy number. T4 endonuclease V was used to quantify the induction and repair of cyclobutane dimers in the SV40 episome and genomic DNA of the same cells. Differences in both parameters were observed cyclobutane dimers were induced at 1.5–2-fold greater frequency in episomal DNA and excised at a reduced rate compared to genomic DNA in the host cells.  相似文献   

3.
Abstract— 4ells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, we studied UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts. We found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m−2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA.  相似文献   

4.
Abstract The photochemotherapeutically active psoralen derivative 7-methylpyrido(3,4-c) psoralen (MePyPs) has been recently shown to be able to photoinduce monoadducts of the C4-cycloaddition type as well as pyrimidine dimers in DNA in vitro . In the present study, we report on the induction of these two types of photolesions in mammalian cells in culture. The MePyPs photocycloadducts were quantified in V79 Chinese hamster cells after treatment with MePyPs plus UVA following enzymatic hydrolysis of the DNA by DNase I, S1 nuclease and acidic phosphatase treatments. Concomitantly induced pyrimidine dimers were determined by two methods, high-pressure liquid chromatography and alkaline gel electrophoresis after dimer-specific endonucleolytic cleavage. The results show that, in Chinese hamster cells treated with MePyPs plus UVA, the yield of pyrimidine dimers is approximately 5-10% that of MePyPs-DNA photocycloadducts. Because psoralen monoadditions to DNA alone are generally not considered as being very phototoxic, a synergistic interaction of monoadditions with pyrimidine dimers may be expected to occur in order to explain the high photobiological effectiveness of this psoralen derivative.  相似文献   

5.
Abstract— We measured excision repair of ultraviolet radiation (UVR)-induced pyrimidine dimers in DNA of the corneal epithelium of the marsupial, Monodelphis domestica , using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that 100 J -2 of UVR from aFS–40 sunlamp(280–400 nm) induced an average of 2.2 ± 0.2 times 10-2 endonuclease-sensitive sites per kilobase (ESS/kb) (pyrimidine dimers) and that ∼ 50% of the dimers were repaired within 12 h after exposure. We also determined that an exposure of 400 J m-2 was needed to induce comparable numbers of pyrimidine dimers (2.5 times 10-2) in the DNA of skin of M. domestica in vivo . In addition, we found that 50% of the dimers were also removed from the epidermal cells of M. domestica within 12 h after exposure. A dose of 100 J m-2 was necessary to induce similar levels of pyrimidine dimers (2.0 ± 0.2 times 10-2) in the DNA of the cultured marsupial cell line Pt K2 ( Potorous tridactylus ).  相似文献   

6.
Abstract— The repair of UV radiation-induced pyrimidine dimers has been measured in lens epithelial DNA of the marsupial Monodelphis domestica using a pyrimidine dimerspecific endonuclease from Micrococcus luteus. Approximately 40% of the initially induced dimers were repaired during 90 min exposures to photoreactivating light. This capacity of the lens epithelium to photorepair pyrimidine dimers may provide a means with which to determine whether pyrimidine dimers in lens epithelial DNA are involved in UV radiation-induced pathologic changes of the lens.  相似文献   

7.
Abstract The rate of excision of sunlight-induced pyrimidine dimers in DNA of exposed human cells was determined. Two normal excision repair-proficient human diploid fibroblast strains (WS-1 and KD) and a repair-deficient strain (XP12BE, group A) maintained in a nondividing state were exposed to summer noon-time sunlight for times (5 and 20 min) that induced numbers of dimers equivalent to far UV (254 nm) exposures of 1 and 4 J/m2. Pyrimidine dimers were quantified in extracted DNA using a U V-endonuclease-alkaline sedimentation assay. The excision rates of these dimers were similar to those observed for the excision of UV-induced pyrimidine dimers. No sunlight-induced inhibition or stimulation of DNA repair was observed in either strain at these low exposures.  相似文献   

8.
Abstract— Cultured cells derived from a goldfish were irradiated with 254nm ultraviolet light. Cell survival and splitting of pyrimidine dimers after photoreactivation treatment with white fluorescent lamps were examined by colony forming ability and by a direct dimer assay, respectively. When UV-irradiated (5 J/m2) cells were illuminated by photoreactivating light, cell survival was enhanced up to a factor of 9 (40min) followed by a decline after prolonged exposures. Exposure of UV-irradiated (15 J/m2) cells to radiation from white fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence dependent manner, up to about 60% reduction at 120 min exposure. Keeping UV-irradiated cells in the dark for up to 120min did not affect either cell survival or the amount of pyrimidine dimers in DNA, indicating that there were not detectable levels of a dark-repair system in the cells under our conditions. Correlation between photoreactivation of colony forming ability and photoreactivation of the pyrimidine dimers was demonstrated, at least at relatively low fluences of photoreactivating light.  相似文献   

9.
Abstract— Exposure of ICR 2A frog cells to photoreactivating light after treatment with monochromatic ultraviolet (UV) radiation in the 252–313 nm range resulted in an increase in survival with similar photoreactivable sectors for each of the wavelengths tested. As photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, these findings support the hypothesis that these are critical lesions responsible for killing of cells exposed to UV radiation in this wavelength range. The action spectra for cell killing and production of UV-endonuclease sensitive sites were similar to the DNA absorption spectrum though not identical. Because the number of endonuclease sensitive sites is a reflection of the yield of pyrimidine dimers, these data also suggest that the induction of dimers in DNA by UV radiation in the 252–313 nm range is the principal event leading to cell death.  相似文献   

10.
Abstract— Changes in UV sensitivity during spore germination of Bacillus subtilis mutants possessing various defects in DNA repair capacities were analysed in order to estimate the yield of the DNA photoproducts at the transient, UV resistant stage which occurs in the process of germination. It was concluded that the yield of the spore-specific photoproduct (5-thyminyl-5,6-dihydrothymine, TDHT) at the transient stage was only about 3% of that in dormant spores and the yield of the cyclobutane-type pyrimidine dimers at this stage was about 10% (or less) of that in germinated spores.  相似文献   

11.
Photoreactivity of UV-b damage in bacteriophage phi X174 DNA   总被引:3,自引:0,他引:3  
Abstract— The fraction of biological damage in isolated single-strand and double-strand forms of bac-teriophage DNA resulting from pyrimidine dimers following exposure to germicidal UV (254 nm) and UV-B (280-320. nm) radiation has been compared. Radiation from a Westinghouse FS-40 sunlamp filtered through a cellulose acetate sheet was used as the UV-B radiation source. Biological damage from pyrimidine dimers was determined by measuring the survival of the viral DNA with and without photoreactivation, an enzymatic process specific for repair of pyrimidine dimers. The same fraction of biological damage in the single strand and double–strand forms of φX174 DNA is repairable by photo-reactivation following exposures to germicidal UV and UV-B radiation.  相似文献   

12.
Abstract— DNA single-strand breaks were produced in uvrA and uvrB strains of E. coli K-12 after UV (254 nm) irradiation. These breaks appear to be produced both directly by photochemical events, and by a temperature-dependent process. Cyclobutane-type pyrimidine dimers are probably not the photoproducts that lead to the temperature-dependent breaks, since photoreactivation had no detectable effect on the final yield of breaks. The DNA strand breaks appear to be repairable by a process that requires DNA polymerase I and polynucleotide ligase, but not the recA, recB, recF, lexA 101 or uvrD gene products. We hypothesize that these temperature-dependent breaks occur either as a result of breakdown of a thermolabile photoproduct, or as the initial endonucleolytic event of a uvrA , uvrB -independent excision repair process that acts on a UV photoproduct other than the cyclobutane-type pyrimidine dimer.  相似文献   

13.
SV40 DNA was irradiated in vitro and in vivo with UV-C (240-280 nm) and UV-B (280-320 nm) light, and damaged sites sensitive to digestion with Escherichia coli endonuclease III (endo III) and bacteriophage T4 endonuclease V (endo V) were quantified. The frequency of endo III-sensitive sites (primarily cytosine photohydrates) induced was 1-2% of the frequency of endo V-sensitive sites (cyclobutane dimers) in both purified SV40 DNA and intracellular episomal SV40 DNA. Endo III- and endo V-sensitive sites in DNA were induced in the same relative proportion at both UV-C and UV-B wavelengths. We found no evidence to support earlier inferences that intracellular conditions enhance the formation of cytosine photohydrates or other monobasic forms of DNA damage.  相似文献   

14.
Abstract— Structural alterations of DNA irradiated with UV light were analyzed by the agarose gel technique. Relaxed, circular pAT 153 DNA molecules were sensitized by broad band radiation with a maximum at 313 nm in the presence of silver ions or irradiated with 254 nm light in buffer only. In both cases the electrophoretic mobility of DNA topoisomers was altered as a linear function of UV exposure. For DNA irradiated in the sensitized reaction the unwinding angle per site sensitive to Micrococcus luteus pyrimidine dimer endonuclease was found tobe–11.4°. This value is significantly smaller thanthe–14.3° already known for DNA topoisomers irradiated with 254 nm light. The irradiated DNAs were a very good substrate for the Escherichia coli photoreactivating enzyme (PRE). However, the photoenzymic removal of all sites sensitive to the endonuclease specific for pyrimidine dimers was not coupled to a full restoration of the original electrophoretic mobility. Thirty and 23% of the unwinding were still present in the photoreactivated topoisomers and the unwinding angles per pyrimidine dimer were then recalculatedas–10.1°and–8.7° for DNAs irradiated with 254 nm and sensitized, respectively. The limited difference between these two values could result from the different base composition of the pyrimidine dimers generated in the conditions of irradiation used. These results show that the tertiary structure of DNA is measureably altered by UV photodamages other than pyrimidine dimers.  相似文献   

15.
Cyclobutyl pyrimidine dimers composed of 5-hydroxymethylcytosine and thymine (5HMC>T dimer for a mutant of T4 ( denV ) that is unable to excise pyrimidine dimers from its DNA. The ability of 5HMC to form dimers suggests that other modified pyrimidines such as 5-methylcytosine can participate in dimer formation, particularly at the UV wavelengths in sunlight likely to be responsible for the induction of skin cancer.  相似文献   

16.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

17.
The biological effectiveness of thymine-thymine cyclobutane dimers specifically induced by photosensitized ultraviolet-B irradiation was analyzed by host-cell reactivation of triplet-sensitized, UV-B irradiated plasmid pRSV beta gal DNA transfected into normal and repair-deficient Chinese hamster ovary cells. For comparison, pRSV beta gal DNA was also UV-C irradiated and transfected into the same cell lines. Ultraviolet endonuclease-sensitive site induction was determined after UV-C irradiation or acetophenone-sensitized UV-B irradiation of plasmid pRSV beta gal DNA. These data were used to calculate the number of cyclobutane pyrimidine dimers required to inactivate expression of the lacZ reporter gene in each irradiation condition. Transfection with UV-C-irradiated plasmid DNA resulted in a significantly greater reduction of reporter gene expression than did transfection with acetophenone-sensitized UV-B-irradiated pRSV beta gal DNA at equivalent induction of enzyme-sensitive sites. Since only a fraction of the inhibition could be accounted for by noncyclobutane dimer photoproducts, these results suggest that cytosine-containing pyrimidine cyclobutane dimers may be more effective than thymine-thymine dimers in inhibiting transient gene expression as measured in such host-cell reactivation experiments in mammalian cells.  相似文献   

18.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

19.
Abstract— S1 endonuclease was shown to remove thymine-containing pyrimidine dimers from UV-irradiated human DNA, although efficient removal could be demonstated only by using long digestion times, relatively high enzyme concentrations, and irradiation sufficient to yield dimer substitutions in DNA of 1 per 1W300 (dimers/base pair). Neutral and alkaline sucrose gradient analysis of strand break induction by S, of UV-irradiated DNA suggests that recognition of the dimer by S, is the limiting factor in its removal and dimer removal usually results from attack on the dimer containing DNA strand without the induction of a double-strand break.  相似文献   

20.
Abstract— DNA from Escherichia coli was irradiated at 254 nm in the presence of silver in order to preferentially enhance the rate of formation of pyrimidine-dimer damage over nondimer damage. The irradiated DNA was treated with formaldehyde in order to measure the unwinding velocity of the defects associated with the pyrimidine dimers. This velocity was found to be 0.18 base pairs/min per pyrimidine dimer, which is nearly 8 times less than that found for a double-strand break (1.37 base pairs/min) obtained by use of sheared DNA whose size was determined by electron microscopy. The rate of reaction of the DNA with formaldehyde varied linearly with the pyrimidine dimer concentration and showed no inflection due to clustering. Treatment of irradiated DNA with UV endonuclease enhanced the formaldehyde reaction by ? 7-fold, consistent with the conversion of a dimer into the faster-reacting defect associated with a single-strand break. These results indicate that the distribution of dimers in DNA is random and not clustered, and that previous interpretations of clustering were based on the false assumption that dimer and chain break defects unwind with similar velocities when treated with formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号