首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

2.
Precipitation of Al3+ at pH = 10 in excess Li2CO3 leads to an anion exchanging compound, [Al2Li(OH)6]+2CO2−3. This compound exhibits, compared to [Mg3Al(OH)8]+2CO2−3, a higher degree of size selectivity in anion exchange. The structure of the [Al2Li(OH)6]+ layers is gibbsite-like, with a (110) diffraction feature at d = 4.35 Å indicating a pronounced Al3+ ordering. As claimed originally by Serna et al., the structure is [Al2Li(OH)6]+Az1/z rather than [Al2(OH)6]Li+Az1/z, with the Li+ coordinated in the octahedral positions left vacant by Al3+. This emerges from the details of a lithium-leaching process, which proposedly leads to a novel compound, [Al2H(OH)6]+Az1/z.  相似文献   

3.
Two silver(I) complexes of triethyl betaine (Et3N+CH2COO, Et3BET) have been prepared and characterized by X-ray crystallography. Both complexes, [Ag2(Et3BET)2 (NO3)2] (1) and [Ag2(Et3BET)2]n (ClO4)2n (2), contain centrosymmetric bis-carboxylato-bridged Ag2(carboxylato-O,O′)2 dimers (Ag---O = 2.16–2.23 Å). The dimeric unit in 1 is bound to a chelating nitrato group [Ag---O = 2.524(3), 2.619(3) Å] at each axial site, resulting in a discrete molecule. In 2 the dimers are extended into a stair-like cationic chain via the coordination of each metal centre by a carboxylato oxygen atom [Ag---O =2.565(5) Å] from an adjacent unit. The intra-dimer Ag… Ag distance is 2.928(1) Å for 1 and 2.856(2) Å for 2.  相似文献   

4.
The crystal structure of K2Cu3(As2O6)2 was determined from single-crystal X-ray data by a direct method strategy and Fourier summations [a = 10.359(4) Å, B = 5.388(2)Å, C = 11.234(4) Å, β = 110.48(2)°; space group C2/m; Z = 2; Rw = 0.025 for 1199 reflections up to sin /λ = 0.81 Å−1]. In detail, the structure consists of As(V)O4 tetrahedra and As(III)O3 pyramids linked by a common O corner atom to [As(V)As(III)O6]4− groups with symmetry m. The bridging bonds As(V)---O [1.749(3) Å] and As(III)---O [1.838(2) Å] are definitely longer than the other As(V)---O bonds [mean 1.669 Å] and As(III)---O bonds [1.764(2) Å, 2×]. The angle As(V)---O---As(III) is 123.0(1)°. The Cu atoms are [4 + 2]- and [4 + 1]-, and the K atom is [9]-coordinated to oxygen atoms. The As2O6 groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of K2Cu3(As2O6)2 suitable for X-ray work were synthesized under hydrothermal conditions.  相似文献   

5.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

6.
Ionic compounds, [Q] [R2SnX(dmit)][dmit=1,3-dithiole-2-thione-dithiolate; Q=1,4-dimethylpyridinium or tetraalkylammonium; R=Phor alkyl; X=Cl, Br, I, NCS, NCSe, or N3] have been obtained by (a) from R2SnX2 and [Q]2[Zn(dmit)2] in the presence of excess QX,(b) from halide exchange reactions in acetone solution between [Q] [R2SnCl(dmit)]and a halide or pseudohalide source, or (c) by addition of QX to [R2Sn(dmit)]. Crystalstructure determinations of [NEt4] [Ph2SnI(dmit)] and [1,4-Me2pyridiniuml [Ph2SnBr(dmit)] as well as of the mixed halides, [1a, 1b, 4a, 2] [Ph2SnClnI1−n(dmit)] (n=0.57, 0.42 or0.22), indicated that the tin atoms have distorted trigonal bipyramidal geometries in the anions,with the X ligand and a dithiolato atom in the axial sites. The [R2SnX(dmit)] anions remain essentially intact in organic solvents, but lose X on extractionwith H2O to give the neutral species, R2Sn(dmit).  相似文献   

7.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

8.
The [Ph4Sb]4 +[Sb4I16]4– · 2Me2C=O and [Ph4Sb]3 +[Sb5I18]3– complexes were synthesized by reacting tetraphenylstibonium salts Ph4SbX (X = I, OSO2C6H4Me-4) with antimony triiodide in acetone. According to X-ray diffraction data, their tetra- and pentanuclear anions [Sb4I16]4– and [Sb5I18]3– have cyclic and linear structure, respectively.  相似文献   

9.
The new compounds K12Ta6Se35 and KTaTe3 have been synthesized through the reaction of Ta metal with a K2Qn(Q = Se, Te) flux. K12Ta6Se35, crystallizes with 4 formula units in space group Pbcn of the orthorhombic system in a cell of dimensions a = 8.3390(17) Å, b = 13.259(3) Å, c = 56.023(11) Å (t = −120 °C). KTaTe3 crystallizes with 20 formula units (or 4 formula units of K5Ta5Te15) in the monoclinic space group P21/c in a cell of dimension a = 7.7177(15) Å, b= 13.826(3) Å, c = 30.981(6) Å, and β = 90.11(3)° (t = −120 °C). Each structure consists of infinite anionic chains of Ta-containing polyhedra well separated by K+ cations. In K12Ta6Se35 there are Ta2Se11 units formed by the face sharing of two TaSe7 elongated bipyramids. These Ta2Se11 units are in turn interconnected by Se2 and Se3 units to form α1[Ta6Se3Se3512−]infinite chains. In KTaTe3, the α1[TaTe3] infinite chains arise from the face sharing of distorted TaTe6 octahedra.  相似文献   

10.
Three new monodimensional hybrid metal (Ti, In, Al) fluorides are synthesized with ethylenediamine (en) as a templating agent in solvothermal conditions assisted by microwave heating. All structures involve inorganic chains built up from TiO2F4 octahedra connected by two opposite O2− vertices in [H2en]·(TiOF4) (I), from InF6(H2O) pentagonal bipyramids linked by F–F edges in [H2en]·(InF4(H2O))2·H2O (II) and from (Al7F30)9− polyanions sharing two opposite AlF6 octahedra in [H2en]3·(Al6F24) (III). I is tetragonal, P4/ncc, a = 12.761(3) Å, c = 8.041(3) Å; II is orthorhombic, F2dd, a = 6.904(5) Å, b = 16.559(5) Å, c = 19.777(4) Å and III is monoclinic, P21/n, a = 9.387(2) Å, b = 6.710(2) Å, c = 21.513(6) Å, β = 97.18(3)°.  相似文献   

11.
12.
The complexes [Bu4N]2+[PtBr6]2− (I), [Ph4P]2+[PtBr6]2− (II), and [Ph3(n-Am)P]2+ (III) are synthesized by the reactions of tetrabutylammonium bromide, tetraphenylphosphonium bromide, and triphenyl(n-amyl)-tetraphenylphosphonium bromide, respectively, with potassium hexabromoplatinate (mole ratio 2: 1). After recrystallization from dimethyl sulfoxide, complexes I, II, and III transform into [Bu4N]+[PtBr5(DMSO)] (IV), [Ph4P]+[PtBr5(DMSO)] (V), and [Ph3(n-Am)P]+[PtBr5(DMSO)] (VI). According to the X-ray diffraction data, the cations of complexes IVVI have a slightly distorted tetrahedral structure. The N-C and P-C bond lengths are 1.492(7)–1.533(6) and 1.782(10)–1.805(10) ?, respectively. The platinum atoms in the mononuclear anions are hexacoordinated. The dimethyl sulfoxide ligands are coordinated with the Pt atom through the sulfur atom (Pt-S 2.3280(18)–2.3389(11) ?). The Pt-Br bond lengths are 2.4330(6)–2.4724(6) ?.  相似文献   

13.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

14.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

15.
Novel salts of the type [Cu(Dien)2][Bu3SnCl3], [Cu(Dien)2][Ph2SnCl4], and [Cu(Dien)2][SnCl6] (Dien—diethylenetriamine) were prepared by the reaction of [Cu(Dien)2]Cl2 with Bu3SnCl, Ph2SnCl2 and SnCl4 in MeOH in a 1:1 ratio, respectively, and characterized by elemental analyses, electronic, IR and ESR spectroscopy, magnetic susceptibility, electrochemistry, and conductivity measurements. The results revealed that the compounds are 1:1 electrolytes and the Cu2+ ion is paramagnetic in the octahedral field. The complexes exhibit a single-electron redox couple. The article was submitted by the authors in English.  相似文献   

16.
The mixed phosphine–phosphine oxide Ph2PCH2CH2P(O)Ph2 (dppeO) reacts with either trans-[PdCl2(PhCN)2], Na2[PdCl4] or trans-[PdCl2(DMSO)2] to give trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2]. Treatment of the latter with the metal chlorides, MCl2 · nH2O (M = Mn, Cu, Co, Zn, Hg; n = 4, 2, 6, 1, 0, respectively) or with Me2SnCl2 or SnCl4 · 5H2O, or with UO2(NO3)2 · 6H2O or UO2(OAc)2 · 2H2O gives heterobimetallic complexes: trans-[PdCl2{-Ph2PCH2CH2P(O)Ph2}2MX2] · nH2O. The cobalt complex (MX2 = CoCl2) was unstable in solution (MeOH or EtOH/CHCl3), and reverts to trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] and CoCl2. trans-[PdCl2{1-Ph2PCH2CH2P(O)Ph2}2] does not apparently react with either NiCl2 · 6H2O or CdCl2 · 2.5H2O.  相似文献   

17.
Lithium and potassium silyloxide complexes [Li(OSiPh3)]n (1), [K(thf)0.2 (OSiPh3)]n (3) and [K(OSiMe2tBu)]n (6) were prepared by deprotonation of HOSiPh3 or HOSiMe2tBu with [Li(nBu)] in hexane or KH in THF, respectively. Crystalline DME adducts [Li(μ-OSiPh3)(η2-DME)]2 (2) and [K43-OSiPh3)33-OSiPh21-Ph))(η2-DME)]2 (μ-DME) (4) were prepared by dissolving 1 or 3, respectively, in dimethoxyethane followed by precipitation with alkane. The potassium-sequestered complexes [K(18-crown-6) (OSiPh3)]2 (5) and [K(18-crown-6)(OSiMe2tBu)]n (7) were prepared from 3 or 5, respectively, and one equiv. of 18-crown-6 ether. The complexes were characterized by single-crystal X-ray diffraction: [Li(μ-OSiPh3)(η2-DME)]2 (2): a dimer featuring tetrahedral lithium centres linked by bridging —OSiPh3 ligands. [Crystal data ( − 156°C): space group P , a = 14.238(6), b = 15.182(7), c = 11.796(5) Å, α = 110.57(2), β = 112.02(2), γ = 63.02(1) Å, V = 2055.33 Å3, Z = 2.] [K43-OSiPh3)33-OSiPh21-Ph)}(η2-DME)]2(μ-DME) (4): (1) two cubanes each having every potassium vertex chemically distinct; (2) one chelating DME ligand, one DME ligand bridging between two cubanes; and (3) a K-ipso-phenyl carbon contact. [Crystal data ( − 133°C): a = 14.246(4), b = 30.939(9), c = 17.981(5) Å, β = 112.33(1)° with Z = 2 in space group P21/c.] [K(18-crown-6)OSiPh3]2 (5): A dimer with slipped face-to-face stacking of the quasi-planar K(18-crown-6)+ part of the two Ph3SiOK(18-crown-6) molecules; these are linked by a dative bond from one ether oxygen of a given crown to potassium contained in the other crown. [Crystal data ( − 155°C): a = 9.324(2), b = 17.640(5), c = 18.148(15) Å, β = 91.60(1)° with Z = 4 in space group P21/c.]  相似文献   

18.
In the presence of CoCl2·6H2O and dppm (bis(diphenylphosphino) methane), the reaction of TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules by [2+2] cycloaddition forms a p-tricyanovinylphenyldicyanomethide ion (PCQ), which has been obtained as one anion unit in one new compound [Co(dppmdo)3][PCQ]2·H2O 1 (dppmdo = bis(diphylphospine oxide) methane). Its structure was determined by X-ray crystallography: 1 crystallizes in with a = 14.174(3) Å, b = 19.553(4) Å, c = 19.776(4) Å, α = 112.72(3)°, β = 95.43(3)°, γ = 110.79(3)°, and Z = 2. It was characterized by IR spectra, UV–Vis spectra, and cyclic voltammogram. Magnetic properties indicate that no magnetic coupling between PCQ and [Co(dppmdo)3]2+ unit.  相似文献   

19.
Abstract

The reaction of 6-methylpyridine-2-carboxaldehyde phenylhydrazone (L) with Ph2SnCl2 has resulted in the formation of a complex salt [LH+]2[Ph2SnCl4]2-. X-ray diffraction studies on the salt reveal the structure of the [Ph2SnCl4] dianion to be centrosymmetric with the tin atom in a distorted octahedral trans-C2Cl4 environment; Sn-Cl(1) 2.598(2), Sn-Cl(2) 2.5875(7) and Sn-C(1) 2.146(3) Å. Associated with the dianion are two [PhN(H)NC(H)C5H3(Me)N(H)] cations via two hydrogen bonding contacts apiece, unusually involving a true Sn-Cl bond.  相似文献   

20.
Reaction of Li with AsClR2 (R = CH(SiMe3)2) affords [Li(μ-AsR2]3 (I), the first structurally characterised dialkylarsenide, which in OEt2 at 25°C yields AsHR2, AsMeR2, AsHR2, or A.sR2 (II) with HCl, MeCl, ButCl, or SnCl2, respectively; upon removal of solvent, II furnishes As2R4 (III), which readily dissociates into II: the As3Li3 ring of I has a boat conformation and the average Li---As bond distance is 2.60(4) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号