首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of processes in which highly excited states of atoms and molecules participate are investigated. These processes are of interest for the kinetics of a low-temperature plasma, for atomic and molecular spectroscopy, and for astrophysics. A quasiclassical theory is developed for transitions between Rydberg states with change of the principal quantum number, and also for the processes of direct and associative ionization of highly excited atoms, which result from collisions between a neutral particle and its atomic core. The state of the inner electrons of a quasimolecular (molecular) ion is not altered by transitions of the outer electrons. Specific calculations are carried out for the case of the collision of hydrogen H(n) with helium He (1s2) atoms. It is shown that the cross sections and the rate constants of these processes are determined in this case by the mechanism investigated in the paper, and not by scattering of the Rydberg electron by the neutral particle. The cross sections for dipole excitation and dissociation of molecular ions from high vibrational energy levels by electron impact is calculated in the Born-Coulomb approximation. The cross sections and the rates of dissociative and three-particle attachment of electrons to ions are determined. The processes of autoionization and autodissociation decay of Rydberg states of vibrationally excited molecules are determined. Also investigated are radiative transitions near the dissociation limit of diatomic molecular ions and neutral molecules, viz., photodissociation and radiative decay of high vibrational levels, and photodissociation and translational (inverse-bremsstrahlung) absorption in collision of atomic particles.Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. Lebedeva AN SSSR, Vol. 145, pp. 80–130, 1984.  相似文献   

2.
We report the creation of an interacting cold Rydberg gas of strontium atoms. We show that the excitation spectrum of the inner valence electron is sensitive to the interactions in the Rydberg gas, even though they are mediated by the outer Rydberg electron. By studying the evolution of this spectrum we observe density-dependent population transfer to a state of higher angular momentum l. We determine the fraction of Rydberg atoms transferred, and identify the dominant transfer mechanism to be l-changing electron-Rydberg collisions associated with the formation of a cold plasma.  相似文献   

3.
By a time-of-flight technique we have studied the radiative decay of lithium atoms excited to high Rydberg levels by electron impact. The observed decay rates are consistent with large values for the orbital angular momentum quantum number l.  相似文献   

4.
The standard classical method of computer simulation is used for evaluation of the inelastic cross section in electron collisions with a highly excited (Rydberg) atom. In the course of collision, the incident and bound electrons move along classical trajectories in the Coulomb field of the nucleus, and the scattering parameters are averaged over many initial conditions. The reduced ionization cross section of a Rydberg atom by electron impact approximately corresponds to that of atoms in the ground states with valence s-electrons and coincides with the results of the previous Monte Carlo calculations. The cross section of an atom transition between Rydberg atom states as a result of electron impact is used for finding the stepwise ionization rate constant of atoms in collisions with electrons or the rate constant of three-body electron-ion recombination in a dense ionized gas because these processes are determined by kinetics of highly excited atom states. Surprisingly, the low-temperature limit of electron temperatures is realized when the electron thermal energy is lower than the atom ionization potential by about three orders of magnitude, as follows from the kinetics of excited atom states. The article is published in the original.  相似文献   

5.
The interference stabilization of Rydberg atoms in strong laser fields is proposed for producing a plasma channel with the inverse population. Inversion between a group of Rydberg levels and low-lying excited levels and the ground state permits amplification and lasing in the IR, visible, and VUV frequency ranges. The lasing and light amplification processes in the plasma channel are analyzed using rate equations and the efficiency of this method is compared with that in the usual method for high harmonic generation during rescattering of electrons by a parent ion.  相似文献   

6.
段俊毅  王勇  张临杰  李昌勇  赵建明  贾锁堂 《物理学报》2015,64(2):23201-023201
用连续窄线宽激光器将超冷铯里德堡原子分别激发到47D3/2, 47D5/2精细态, 观察了处于里德堡精细态的铯原子向超冷铯等离子体自由演化的过程, 详细对比了不同精细态的铯里德堡原子预电离时间、电离速率以及等离子体的转化效率. 将里德堡原子快速转化为等离子体的过程解释为局域势阱内由预电离产生的电子与里德堡原子的快速碰撞导致的雪崩电离.  相似文献   

7.
The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n = 22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg-Rydberg atom collision ionization theory.  相似文献   

8.
9.
Signals of ultracold plasma are observed by two-photon ionization of laser-cooled caesium atoms in a magneto-optical trap. Recombination of ions and electrons into Rydberg atoms during the expansion of ultracold plasma is investigated by using state-selective field ionization spectroscopy. The dependences of recombination on initial electron temperature (1--70 K) and initial ion density ($ \sim $10$^{10}$ cm$^{ - 3})$ are investigated. The measured dependence on initial ion density is $N^{1.547\pm 0.004}$ at a delay time of 5 $\mu $s. The recombination rate rapidly declines as initial electron temperature increases when delay time is increased. The distributions of Rydberg atoms on different values of principal quantum number $n$, i.e. $n=30$--60, at an initial electron temperature of 3.3 K are also investigated. The main experimental results are approximately explained by the three-body recombination theory.  相似文献   

10.
A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to implement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.  相似文献   

11.
We investigate the idea of adding Rydberg atoms to an ultracold plasma to control the electronic temperature of the plasma. We show that a certain amount of control is indeed possible, and discuss limitations for the extent of electron cooling. Experimental data are found to be in good agreement with numerical simulations.  相似文献   

12.
The afterglow of a dusty plasma of rf discharge in argon is simulated by the particle-in-cell-Monte Carlo collision (PIC-MCC) method. The experimental observation that heavy dust contamination of plasma leads to an anomalous increase in the electron density at the beginning of afterglow is explained by release of electrons from the dust surface. Under the assumption that the floating potential of particles is in equilibrium with plasma conditions, the fast cooling of electrons in afterglow plasma due to a rapid escape of hot electrons from the volume leads to a decrease in the magnitude of the floating potential and hence to a loss of charge by dust. The intensive desorption of electrons from nanoparticles is the origin of anomalous behavior of the electron density. At the next stage of afterglow, when the electrons become cool, the plasma decay is defined by ambipolar diffusion. The effect of metastable argon atoms is also considered. Additional ionization due to metastable atom collisions affects the electron temperature but does not change the behavior of the electron density qualitatively.  相似文献   

13.
J. E. Palmer 《Molecular physics》2019,117(21):3108-3119
Matter-wave interferometry has been performed with helium atoms in high Rydberg states. In the experiments the atoms were prepared in coherent superpositions of Rydberg states with different electric dipole moments. Upon the application of an inhomogeneous electric field, the different forces on these internal state components resulted in the generation of coherent superpositions of momentum states. Using a sequence of microwave and electric field gradient pulses the internal Rydberg states were entangled with the momentum states associated with the external motion of these matter waves. Under these conditions matter-wave interference was observed by monitoring the populations of the Rydberg states as the magnitudes and durations of the pulsed electric field gradients were adjusted. The results of the experiments have been compared to, and are in excellent quantitative agreement with, matter-wave interference patterns calculated for the corresponding pulse sequences. For the Rydberg states used, the spatial extent of the Rydberg electron wavefunction was ~320?nm. Matter-wave interferometry with such giant atoms is of interest in the exploration of the boundary between quantum and classical mechanics. The results presented also open new possibilities for measurements of the acceleration of Rydberg positronium or antihydrogen atoms in the Earth's gravitational field.  相似文献   

14.
15.
We report the results of simulations that explain many properties of ultracold neutral plasmas. We find that three-body recombination is important at very low temperatures since it is a heating mechanism for the electron gas and it preferentially removes the slow ions from the plasma. We also find that collisions between cold electrons and Rydberg atoms are an important source of electron heating and deexcitation of atoms formed in the plasma. Simulations show that the Coulomb coupling constant does not become larger than similar1/5 for the reported experiments.  相似文献   

16.
Laser-stimulated radiative transitions from states close to the ionization threshold to low-lying atomic levels are considered for protons (antiprotons) in a cold electron (positron) plasma and estimates for the resulting formation rate of hydrogen (antihydrogen) atoms in the ground state are given. The estimates apply to both laser-stimulated recombination and induced radiative stabilization of high Rydberg levels. First experiments concerning laser-stimulated recombination in merged beams of electrons and protons are discussed, which have confirmed the rate predictions for this process. In view of antihydrogen formation in a cold trapped positron plasma, the use of two successive stimulated transitions is considered for obtaining a high formation rate of ground-state atoms at relatively low radiation intensity.  相似文献   

17.
Cold Rydberg atoms exposed to strong magnetic fields possess unique properties which open the pathway for an intriguing many-body dynamics taking place in Rydberg gases, consisting of either matter or anti-matter systems. We review both the foundations and recent developments of the field in the cold and ultracold regime where trapping and cooling of Rydberg atoms have become possible. Exotic states of moving Rydberg atoms, such as giant dipole states, are discussed in detail, including their formation mechanisms in a strongly magnetized cold plasma. Inhomogeneous field configurations influence the electronic structure of Rydberg atoms, and we describe the utility of corresponding effects for achieving tightly trapped ultracold Rydberg atoms. We review recent work on large, extended cold Rydberg gases in magnetic fields and their formation in strongly magnetized ultracold plasmas through collisional recombination. Implications of these results for current antihydrogen production experiments are pointed out, and techniques for the trapping and cooling of such atoms are investigated.  相似文献   

18.
We have observed multiphoton ionization of the 5s core electron from a 5snd radial Rydberg wave packet of Sr atoms using a short optical pulse. When the outer nd electron is at its outer turning point the inner 5s electron is removed from the atom, and the outer electron is left in a Sr+ Rydberg state, but when the outer electron is at the inner turning point this does not occur. Analysis of the final Sr+ Rydberg states shows that the two electrons interact as the inner electron leaves, so that the outer electron is not simply projected onto the Sr+ Rydberg states.  相似文献   

19.
The Auger rates of triply excited Rydberg series are shown to behave rather differently from doubly excited series. It is shown that in hollow atoms the Auger decay rates for Rydberg series of the type 2l2l(')nl(") with n>/=2 are expected to be nearly independent of n, while for doubly excited series of the type 2lnl(') the decay rate in general decreases with increasing n. In addition the ratio between the rates for 2l2l(')nl(") Rydberg series with different l(") values will be fixed and often the ratio will be equal to one.  相似文献   

20.
王德华 《中国物理 B》2011,20(1):13403-013403
The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号