首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Given a graph Γ, we construct a simple, convex polytope, dubbed graph-associahedra, whose face poset is based on the connected subgraphs of Γ. This provides a natural generalization of the Stasheff associahedron and the Bott-Taubes cyclohedron. Moreover, we show that for any simplicial Coxeter system, the minimal blow-ups of its associated Coxeter complex has a tiling by graph-associahedra. The geometric and combinatorial properties of the complex as well as of the polyhedra are given. These spaces are natural generalizations of the Deligne-Knudsen-Mumford compactification of the real moduli space of curves.  相似文献   

2.
In 1992 Thomas Bier presented a strikingly simple method to produce a huge number of simplicial (n – 2)-spheres on 2n vertices, as deleted joins of a simplicial complex on n vertices with its combinatorial Alexander dual. Here we interpret his construction as giving the poset of all the intervals in a boolean algebra that “cut across an ideal.” Thus we arrive at a substantial generalization of Bier’s construction: the Bier posets Bier(P, I) of an arbitrary bounded poset P of finite length. In the case of face posets of PL spheres this yields cellular “generalized Bier spheres.” In the case of Eulerian or Cohen–Macaulay posets P we show that the Bier posets Bier(P, I) inherit these properties. In the boolean case originally considered by Bier, we show that all the spheres produced by his construction are shellable, which yields “many shellable spheres,” most of which lack convex realization. Finally, we present simple explicit formulas for the g-vectors of these simplicial spheres and verify that they satisfy a strong form of the g-conjecture for spheres.  相似文献   

3.
4.
5.
The structure of order ideals in the Bruhat order for the symmetric group is elucidated via permutation patterns. The permutations with boolean principal order ideals are characterized. These form an order ideal which is a simplicial poset, and its rank generating function is computed. Moreover, the permutations whose principal order ideals have a form related to boolean posets are also completely described. It is determined when the set of permutations avoiding a particular set of patterns is an order ideal, and the rank generating functions of these ideals are computed. Finally, the Bruhat order in types B and D is studied, and the elements with boolean principal order ideals are characterized and enumerated by length.  相似文献   

6.
A real algebraic integer α>1 is called a Salem number if all its remaining conjugates have modulus at most 1 with at least one having modulus exactly 1. It is known [J.A. de la Peña, Coxeter transformations and the representation theory of algebras, in: V. Dlab et al. (Eds.), Finite Dimensional Algebras and Related Topics, Proceedings of the NATO Advanced Research Workshop on Representations of Algebras and Related Topics, Ottawa, Canada, Kluwer, August 10-18, 1992, pp. 223-253; J.F. McKee, P. Rowlinson, C.J. Smyth, Salem numbers and Pisot numbers from stars, Number theory in progress. in: K. Gy?ry et al. (Eds.), Proc. Int. Conf. Banach Int. Math. Center, Diophantine problems and polynomials, vol. 1, de Gruyter, Berlin, 1999, pp. 309-319; P. Lakatos, On Coxeter polynomials of wild stars, Linear Algebra Appl. 293 (1999) 159-170] that the spectral radii of Coxeter transformation defined by stars, which are neither of Dynkin nor of extended Dynkin type, are Salem numbers. We prove that the spectral radii of the Coxeter transformation of generalized stars are also Salem numbers. A generalized star is a connected graph without multiple edges and loops that has exactly one vertex of degree at least 3.  相似文献   

7.
Let (Π,Σ) be a Coxeter system. An ordered list of elements in Σ and an element in Π determine a subword complex, as introduced in Knutson and Miller (Ann. of Math. (2) (2003), to appear). Subword complexes are demonstrated here to be homeomorphic to balls or spheres, and their Hilbert series are shown to reflect combinatorial properties of reduced expressions in Coxeter groups. Two formulae for double Grothendieck polynomials, one of which appeared in Fomin and Kirillov (Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190), are recovered in the context of simplicial topology for subword complexes. Some open questions related to subword complexes are presented.  相似文献   

8.
It was proven by González-Meneses, Manchón and Silvero that the extreme Khovanov homology of a link diagram is isomorphic to the reduced (co)homology of the independence simplicial complex obtained from a bipartite circle graph constructed from the diagram. In this paper, we conjecture that this simplicial complex is always homotopy equivalent to a wedge of spheres. In particular, its homotopy type, if not contractible, would be a link invariant (up to suspension), and it would imply that the extreme Khovanov homology of any link diagram does not contain torsion. We prove the conjecture in many special cases and find it convincing to generalize it to every circle graph (intersection graph of chords in a circle). In particular, we prove it for the families of cactus, outerplanar, permutation and non-nested graphs. Conversely, we also give a method for constructing a permutation graph whose independence simplicial complex is homotopy equivalent to any given finite wedge of spheres. We also present some combinatorial results on the homotopy type of finite simplicial complexes and a theorem shedding light on previous results by Csorba, Nagel and Reiner, Jonsson and Barmak. We study the implications of our results to knot theory; more precisely, we compute the real-extreme Khovanov homology of torus links T(3, q) and obtain examples of H-thick knots whose extreme Khovanov homology groups are separated either by one or two gaps as long as desired.  相似文献   

9.
Applying a classical theorem of Smith, we show that the poset property of being Gorenstein* over Z2 is inherited by the subposet of fixed points under an involutive poset automorphism. As an application, we prove that every interval in the Bruhat order on (twisted) involutions in an arbitrary Coxeter group has this property, and we find the rank function. This implies results conjectured by F. Incitti. We also show that the Bruhat order on the fixed points of an involutive automorphism induced by a Coxeter graph automorphism is isomorphic to the Bruhat order on the fixed subgroup viewed as a Coxeter group in its own right.  相似文献   

10.
A hyperplane arrangement is a finite set of hyperplanes through the origin in a finite-dimensional real vector space. Such an arrangement divides the vector space into a finite set of regions. Every such region determines a partial order on the set of all regions in which these are ordered according to their combinatorial distance from the fixed base region.We show that the base region is simplicial whenever the poset of regions is a lattice and that conversely this condition is sufficient for the lattice property for three-dimensional arrangements, but not in higher dimensions. For simplicial arrangements, the poset of regions is always a lattice.In the case of supersolvable arrangements (arrangements for which the lattice of intersections of hyperplanes is supersolvable), the poset of regions is a lattice if the base region is suitably chosen. We describe the geometric structure of such arrangements and derive an expression for the rank-generating function similar to a known one for Coxeter arrangements. For arrangements with a lattice of regions we give a geometric interpretation of the lattice property in terms of a closure operator defined on the set of hyperplanes.The results generalize to oriented matroids. We show that the adjacency graph (and poset of regions) of an arrangement determines the associated oriented matroid and hence in particular the lattice of intersections.The work of Anders Björner was supported in part by a grant from the NSF. Paul Edelman's work was supported in part by NSF Grants DMS-8612446 and DMS-8700995. The work of Günter Ziegler was done while he held a Norman Levinson Graduate Fellowship at MIT.  相似文献   

11.
The settings for homotopical algebra—categories such as simplicial groups, simplicial rings, AA spaces, EE ring spectra, etc.—are often equivalent to categories of algebras over some monad or triple T. In such cases, T is acting on a nice simplicial model category in such a way that T descends to a monad on the homotopy category and defines a category of homotopy T-algebras. In this setting there is a forgetful functor from the homotopy category of T-algebras to the category of homotopy T-algebras.  相似文献   

12.
Jacob Mostovoy 《Topology》2006,45(2):281-293
It is shown that Segal's theorem on the spaces of rational maps from CP1 to CPn can be extended to the spaces of continuous rational maps from CPm to CPn for any m?n. The tools are the Stone-Weierstrass theorem and Vassiliev's machinery of simplicial resolutions.  相似文献   

13.
In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k=1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations, respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.  相似文献   

14.
We introduce the notion of star cluster of a simplex in a simplicial complex. This concept provides a general tool to study the topology of independence complexes of graphs. We use star clusters to answer a question arisen from works of Engström and Jonsson on the homotopy type of independence complexes of triangle-free graphs and to investigate a large number of examples which appear in the literature. We present an alternative way to study the chromatic and clique numbers of a graph from a homotopical point of view and obtain new results regarding the connectivity of independence complexes.  相似文献   

15.
Results of R. Stanley and M. Masuda completely characterize the h-vectors of simplicial posets whose order complexes are spheres. In this paper we examine the corresponding question in the case where the order complex is a ball. Using the face rings of these posets, we develop a series of new conditions on their h-vectors. We also present new methods for constructing poset balls with specific h-vectors. Combining this work with a new result of S. Murai we are able to give a complete characterization of the h-vectors of simplicial poset balls in all even dimensions, as well as odd dimensions less than or equal to five.  相似文献   

16.
We construct examples of Gromov hyperbolic Coxeter groups of arbitrarily large dimension. We also extend Vinbergs theorem to show that if a Gromov hyperbolic Coxeter group is a virtual Poincaré duality group of dimension n, then n 61.Coxeter groups acting on their associated complexes have been extremely useful source of examples and insight into nonpositively curved spaces over last several years. Negatively curved (or Gromov hyperbolic) Coxeter groups were much more elusive. In particular their existence in high dimensions was in doubt.In 1987 Gabor Moussong [M] conjectured that there is a universal bound on the virtual cohomological dimension of any Gromov hyperbolic Coxeter group. This question was also raised by Misha Gromov [G] (who thought that perhaps any construction of high dimensional negatively curved spaces requires nontrivial number theory in the guise of arithmetic groups in an essential way), and by Mladen Bestvina [B2].In the present paper we show that high dimensional Gromov hyperbolic Coxeter groups do exist, and we construct them by geometric or group theoretic but not arithmetic means.  相似文献   

17.
For several important classes of manifolds acted on by the torus, the information about the action can be encoded combinatorially by a regular n-valent graph with vector labels on its edges, which we refer to as the torus graph. By analogy with the GKM-graphs, we introduce the notion of equivariant cohomology of a torus graph, and show that it is isomorphic to the face ring of the associated simplicial poset. This extends a series of previous results on the equivariant cohomology of torus manifolds. As a primary combinatorial application, we show that a simplicial poset is Cohen-Macaulay if its face ring is Cohen-Macaulay. This completes the algebraic characterisation of Cohen-Macaulay posets initiated by Stanley. We also study blow-ups of torus graphs and manifolds from both the algebraic and the topological points of view.  相似文献   

18.
The category of small covariant functors from simplicial sets to simplicial sets supports the projective model structure [B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories, preprint, 2005]. In this paper we construct various localizations of the projective model structure and also give a variant for functors from simplicial sets to spectra. We apply these model categories in the study of calculus of functors, namely for a classification of polynomial and homogeneous functors. In the n-homogeneous model structure, the nth derivative is a Quillen functor to the category of spectra with Σn-action. After taking into account only finitary functors—which may be done in two different ways—the above Quillen map becomes a Quillen equivalence. This improves the classification of finitary homogeneous functors by T.G. Goodwillie [T.G. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003) 645-711 (electronic)].  相似文献   

19.
We give closed combinatorial product formulas for Kazhdan–Lusztig polynomials and their parabolic analogue of type q in the case of boolean elements, introduced in (Marietti in J. Algebra 295:1–26, 2006), in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups, this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean elements.  相似文献   

20.
We study Beck-like coloring of partially ordered sets (posets) with a least element 0. To any poset P with 0 we assign a graph (called a zero-divisor graph) whose vertices are labelled by the elements of P with two vertices x,y adjacent if 0 is the only element lying below x and y. We prove that for such graphs, the chromatic number and the clique number coincide. Also, we give a condition under which posets are not finitely colorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号