首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of arginine (Arg), lysine (Lys), and phenylalanine (Phe) residues and phosphorylation on the molecular ion yields of model peptides have been quantitatively studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in both positive- and negative-ion mode. The results obtained from these experiments have been interpreted from the standpoint of two different components, namely, desorption and ionization, on the basis of the physicochemical properties of constituent amino acids of the model peptides. The presence of basic residues such as Arg and Lys enhanced the ion yields of protonated molecules [M + H]+. An N-terminal rather than a C-terminal Arg residue was advantageous for the formation of both [M + H]+ and [M – H]. The presence of the Phe residue resulted in the increase of the ion yields of both [M + H]+ and [M – H]. In contrast, the presence of phosphate group(s) contributed to the suppression of the yields of both [M + H]+ and [M – H] due to the loss of phosphate group. The detection limits for both [M + H]+ and [M – H] of model peptides have been evaluated.  相似文献   

2.
Qualitative and quantitative analysis of post‐translational protein modifications by mass spectrometry is often hampered by changes in the ionization/detection efficiencies caused by amino acid modifications. This paper reports a comprehensive study of the influence of phosphorylation and methylation on the responsiveness of peptides to matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Using well‐characterized synthetic peptide mixtures consisting of modified peptides and their unmodified analogs, relative ionization/detection efficiencies of phosphorylated, monomethylated, and dimethylated peptides were determined. Our results clearly confirm that the ion yields are generally lower and the signal intensities are reduced with phosphopeptides than with their nonphosphorylated analogs and that this has to be taken into account in MALDI and ESI mass spectrometry. However, the average reduction of ion yield caused by phosphorylation is more pronounced with MALDI than with ESI. The unpredictable impact of phosphorylation does not depend on the hydrophobicity and net charge of the peptide, indicating that reliable quantification of phosphorylation by mass spectrometry requires the use of internal standards. In contrast to phosphorylation, mono‐ and dimethylated peptides frequently exhibit increased signal intensities in MALDI mass spectrometry (MALDI‐MS). Despite minor matrix‐dependent variability, MALDI methods are well suited for the sensitive detection of dimethylated arginine and lysine peptides. Mono‐ and dimethylation of the arginine guanidino group did not significantly influence the ionization efficiency of peptides in ESI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A high performance liquid chromatography and a mass spectrometry matrix-assisted laser desorption/ionization (MALDI) methods were used to select the conditions of both successful separation and to identify amino acids and peptides on the carbon sorbents. For the first time the graphitized and nongraphitized carbon blacks were used for the identification of amino acids and peptides by the MALDI method. It was shown that an increased surface area of carbon blacks led to a sharp increase in the intensities of the detected peaks of protonated molecular ions and adducts with alkali metal cations of the amino acids and peptides under study.  相似文献   

4.
An investigation of phosphate loss from sodium-cationized phosphotyrosine containing peptide ions was conducted using liquid infrared (2.94 microm) atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) coupled to an ion trap mass spectrometer (ITMS). Previous experiments in our laboratory explored the fragmentation patterns of protonated phosphotyrosine containing peptides, which experience a loss of 98 Da under CID conditions in the ITMS. This loss of 98 Da is unexpected for phosphotyrosine, given the structure of its side chain. Phosphate loss from phosphotyrosine residues seems to be dependent on the presence of arginine or lysine residues in the peptide sequence. In the absence of a basic residue, the protonated phosphotyrosine peptides do not undergo losses of HPO(3) (Delta 80 Da) nor HPO(3) + H(2)O (Delta 98 Da) in their CID spectra. However, sodium cationized phosphotyrosine containing peptides that do not contain arginine or lysine residues within their sequences do undergo losses of HPO(3) (Delta 80 Da) and HPO(3) + H(2)O (Delta 98 Da) in their CID spectra.  相似文献   

5.
To elucidate the mechanism of the exceptional behavior of lysine for the ionization (protonation) yields in matrix-assisted laser desorption/ionization (MALDI) observed by Nishikaze and Takayama [Rapid Commun. Mass Spectrom. 2006, 20, 376], the temperature dependences of proton affinity (PA) and gas phase basicity for 20 amino acids are theoretically analyzed with correlated ab initio molecular orbital method under ideal gas condition. We have found that two different conformations, the linear structure with elongation of the side chain and the folded one having intramolecular hydrogen bonding, play important roles for the exceptional behavior of lysine. At low temperatures of around 298 K, the most stable conformation of the protonated lysine is the folded structure due to the formation of intramolecular hydrogen bonding. Meanwhile, at high temperatures, the Gibbs free energy of linear structure of protonated lysine becomes lower than that of the folded one because of the increment of vibrational entropic contribution. To explicitly take account of the contribution of the free energies, we have proposed the effective PA values thermally averaged using the ratio of Boltzmann distributions for two conformations. Since the effective PA value for lysine drastically decreases as the temperature increases above 1000 K, the linear correlation is clearly obtained between our effective PA values at high temperature and the ion yields in MALDI.  相似文献   

6.
An investigation of phosphate loss from phosphopeptide ions was conducted, using both atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) and electrospray ionization (ESI) coupled to an ion trap mass spectrometer (ITMS). These experiments were carried out on a number of phosphorylated peptides in order to investigate gas phase dephosphorylation patterns associated with phosphoserine, phosphothreonine, and phosphotyrosine residues. In particular, we explored the fragmentation patterns of phosphotyrosine containing peptides, which experience a loss of 98 Da under collision induced dissociation (CID) conditions in the ITMS. The loss of 98 Da is unexpected for phosphotyrosine, given the structure of its side chain. The fragmentation of phosphoserine and phosphothreonine containing peptides was also investigated. While phosphoserine and phosphothreonine residues undergo a loss of 98 Da under CID conditions regardless of peptide amino acid composition, phosphate loss from phosphotyrosine residues seems to be dependent on the presence of arginine or lysine residues in the peptide sequence.  相似文献   

7.
This is the first report of an application of collisionally induced fragmentation of amino acids (AA) and their derivatives by MALDI TOF/TOF tandem mass spectrometry (MS). In this work, we collected the data on high-energy fragmentation reactions of a large group of protonated amino acids and their derivatives with the goal of determining which product ions are analyte specific and if yields of these fragment could be used for quantitative analysis. From 34 different amino acids (20 alpha-amino acids, beta-amino acids, homocysteine, GABA, and modified AA Met sulfone and sulfoxide, hydroxyproline, etc.) we observed that high yields of the target specific immonium ions and fragmentation patterns are most similar to EI or FAB CID on sector instruments. The major exceptions were two highly basic amino acids, Arg and Orn. It is noted that neither beta-, gamma-, nor delta-amino acids produce immonium ions. As might be predicted from high-energy CID work on peptides from the sectors and TOF/TOF, the presence of specific indicator ions in MALDI tandem MS allows distinguishing isomeric and isobaric amino acids. These indicator ions, in combination with careful control of data acquisition, ensure quantitative analysis of amino acids. We believe our data provide strong basis for the application of MALDI TOF/TOF MS/MS in qualitative and quantitative analysis of amino and organic acids, including application in clinical medicine.  相似文献   

8.
Ionic liquids are interesting solvents for a number of applications in chemistry and biotechnology. We characterized five different ionic liquids by laser desorption/ionization (LDI) and by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and studied the analysis of amino acids, peptides and proteins dissolved in these solvents. Signals of both anions and cations of the ionic liquids could be observed both in LDI- and in MALDI-MS. In the latter case, adduct formation between anions and cations of the analytes was observed. Amino acids, peptides and proteins could be analyzed in ionic liquids after addition of matrix substances. Sodium and potassium adducts were not observed in any analysis involving ionic liquids. Low molecular mass compounds and peptides could be analyzed best in the presence of water-immiscible ionic liquids, whereas proteins gave the best results in water-miscible ionic liquids. Optimal analysis conditions such as molar matrix-to-analyte and ionic liquid-to-matrix ratios were determined. Homogeneity of samples in the presence of ionic liquids was reduced compared with classical MALDI preparations. Relative quantitation of amino acids was possible using isotope-labeled internal standards. MALDI-MS thus can be used for the analysis of chemical reactions and the screening of enzyme-catalyzed reactions in ionic liquids and for the analysis of the biocatalysts dissolved in these solvents. Theoretical aspects of ion formation in the presence of ionic liquids both in LDI and MALDI analysis are discussed.  相似文献   

9.
Recently, two ionization sources, electrospray (ESI) and matrix-assisted laser desorption (MALDI) have been used in parallel to exploit their complementary nature and to increase proteome coverage. In this study, a method using bidimensional (2D) nanoLC coupled online with ESI quadrupole time-of-flight (Q-TOF) with the simultaneous collection of fractions for analyses by LC–MALDI Q-TOF–MS/MS was developed. A total of 39 bovine proteins were identified to a high degree of confidence. To help in differentiating peptide detection following ESI and MALDI with the same mass spectrometer, we compared physico–chemical characteristics of the peptides (molecular mass, charge and size) by principal component analysis (PCA) and analysis of variance on the results of PCA. More hydrophobic peptides with a wider mass coverage were identified when ESI was used, whereas more basic and smaller peptides were identified when MALDI was used. However, the generally accepted differentiation between ESI and MALDI according to the presence of basic amino acids residues Lys and Arg and the ratio Lys/Arg was not shown as significant in this study. Moreover, we pointed out the importance of the type of mass spectrometer used in complement to both ionization sources for achieving a global increase of proteome coverage.  相似文献   

10.
A series of cationic, zwitterionic and anionic fluorinated carbocyanine dyes, spin-coated on Si substrates, were measured with time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) under Ga(+) primary ion bombardment. Detailed fragmentation patterns were developed for all dyes measured. In the positive mode, the resulting spectra showed very intense signals for the precursor ions of the cationic dyes, whereas the protonated signals of the anionic dyes were hardly detected. Differences of three orders of magnitude were repeatedly observed for the secondary ion signal intensities of cationic and anionic dyes, respectively. All measured dyes yielded mass spectra containing several characteristic fragment ions. Although the secondary ion yields were still higher for the cationic than the anionic dye fragments, the difference was reduced to a factor of < or =10. This result and the fact that M(+), [M + H](+) or [M + 2H](+) are even-electron species make it very likely that the recorded fragments were not formed directly out of the (protonated) parent ions M(+), [M + H](+) or [M + 2H](+). In the negative mode, none of the recorded spectra contained molecular information. Only signals originating from some characteristic elements of the molecules (F, Cl), the anionic counter ion signal and some low-mass organic ions were detected. A comparative study was made between TOF-S-SIMS, using Ga(+) primary ions, and other mass spectrometric techniques, namely fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). The measurements showed that MALDI, ESI and FAB all give rise to spectra containing molecular ion signals. ESI and FAB produced M(+) and [M + H](+) signals, originating from the cationic and zwitterionic dyes, in the positive mode and M(-) and [M - H](-) signals of the anionic and zwitterionic dyes in the negative mode. With MALDI, molecular ion signals were measured in both modes for all the dyes. Structural fragment ions were detected for FAB, ESI and MALDI in both the positive and negative modes. Compared with the other techniques, TOF-S-SIMS induced a higher degree of fragmentation.  相似文献   

11.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization (MALDI) mainly generate protonated ions from peptides and proteins but sodiated (or potassiated) ions from carbohydrates. The ion intensities of sodiated (or potassiated) carbohydrates generated by ESI and MALDI are generally lower than those of protonated peptides and proteins. Ab initio calculations and transition state theory were used to investigate the reasons for the low detection sensitivity for underivatized carbohydrates. We used glucose and cellobiose as examples and showed that the low detection sensitivity is partly attributable to the following factors. First, glucose exhibits a low proton affinity. Most protons generated by ESI or MALDI attach to water clusters and matrix molecules. Second, protonated glucose and cellobiose can easily undergo dehydration reactions. Third, the sodiation affinities of glucose and cellobiose are small. Some sodiated glucose and cellobiose dissociate into the sodium cations and neutral carbohydrates during ESI or MALDI process. The increase of detection sensitivity of carbohydrates in mass spectrometry by various methods can be rationalized according to these factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of complex peptide mixtures is often hampered by signal suppression effects as well as certain intrinsic properties of specific peptides that influence the desorption/ionization behavior. The present systematic study reports on the relationship between the occurrence of certain amino acids in peptides and the intensities of the related ions which appear during MALDI-MS analysis for both tryptic digests of proteins and synthetic peptide mixtures. The analysis of the tryptic digests revealed that the peptide sequences of the most intense peaks detected by MALDI-MS contained significantly higher proportions of arginine, phenylalanine, proline, and leucine than the average values for the measured proteins. The relationship between the relative signal intensities and amino acid compositions of peptides was studied in more detail by the partial least squares (PLS) method using equimolar mixtures of 144 well-characterized synthetic peptides. The regression coefficients clearly indicated that the presence of arginine, phenylalanine, leucine and proline tend to enhance the desorption/ionization process which results in higher MALDI-MS peak intensities. Furthermore, it was shown that the impact of arginine depends strongly on the identity of adjacent amino acids.  相似文献   

14.
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix‐assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction‐sensitive dyes and S‐nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S‐nitrosylated peptide, protonated molecule ion [M + H]+ and NO‐eliminated molecular ion [M − NO + H]+• were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The grazing incidence surface-induced dissociation (GI-SID) of various protonated peptides with typical kinetic energies of 350 eV was investigated. Peptide ions were generated by matrix-assisted laser desorption/ionization (MALDI) using delayed extraction. The collision target surfaces used were aluminum and a liquid film of perfluorinated hydrocarbons. All peptides studied in these experiments showed enhanced fragment ion yields at grazing incidence (GI-SID effect) as observed in our former experiments with other precursor ion types. In general the GI-SID spectra exhibit N-terminal a(1)-type fragment ions, immonium ions and side-chain fragment ions in the low mass-to-charge region. Fragment ion series of the peptide backbone were not observed, which are typical and abundant in the spectra of established fragmentation techniques like collision-induced dissociation, MALDI post-source decay or surface-induced dissociation at steeper angles. The potential of the GI-SID process to yield useful information for primary structure determination of peptides is indicated by the observed differences in the GI-SID spectra of the isomeric dipeptides LR and IR.  相似文献   

16.
Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.  相似文献   

17.
We report here a procedure for the independent analysis of two groups of peptides by liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry (LC-MALDI MS/MS), using a selective isolation-detection procedure. In this procedure all primary amino groups of tryptic peptides derived from mouse liver proteins are blocked, restricting their positive charge, at acidic pH, to the presence of histidine and arginine residues. After strong cation exchange chromatography, multiply charged peptides (R + H > 1) are retained on the column and separated with high selectivity from singly (R + H = 1) and neutral peptides (R + H = 0) which are together collected in the flow-through. Using LC-MALDI-MS/MS analysis, the retained fraction displayed a 94% of enrichment of multiply charged peptides while in the flow-through; peptides with at least one arginine or histidine residue were exclusively identified, which suggests that MS detection in this fraction is restricted only to those peptides with ionizable side chains, arginine and histidine amino acids.  相似文献   

18.
栝楼蛋白 2: 栝楼蛋白部分化学结构的初步测定   总被引:5,自引:0,他引:5  
栝楼蛋白(Trichobitacin)是从栝楼(Trichosanthes kirilowiiMaxim, Cucurbitaceae)中新发现的核糖体失活蛋白, 分子量为27,228; pI为9.6。应用基质辅助的激光解析飞行时间质谱(MALDI-TOF-MS)和快原子轰击质谱法(FAB-MS)分别测定胰蛋白酶酶解栝楼蛋白和天花粉蛋白(Trichosanthin)的混合肽质谱, 通过比较发现了一些分子量相同的肽。由于这两种蛋白质都来源于栝楼块根, 同源性比较强, 所以这些肽序列在两种蛋白质中基本一样; 再结合蛋白N-端自动顺序仪测定栝楼蛋白N-端的结果, 确定了栝楼蛋白N-端38个氨基酸的顺序, 栝楼蛋白经胰蛋白酶酶解后所得肽段用HPLC分离纯化, 再用蛋白质自动顺序仪, DABITC/PITC双偶合手工法和质谱法共确定了栝楼蛋白N-端, C-端等100多个氨基酸残基的序列。  相似文献   

19.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号