首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Let G be a connected graph of order n. The diameter of a graph is the maximum distance between any two vertices of G. In this paper, we will give some bounds on the diameter of G in terms of eigenvalues of adjacency matrix and Laplacian matrix, respectively.  相似文献   

2.
The clique graph K(G) of a graph is the intersection graph of maximal cliques of G. The iterated clique graph Kn(G) is inductively defined as K(Kn?1(G)) and K1(G) = K(G). Let the diameter diam(G) be the greatest distance between all pairs of vertices of G. We show that diam(Kn(G)) = diam(G) — n if G is a connected chordal graph and n ≤ diam(G). This generalizes a similar result for time graphs by Bruce Hedman.  相似文献   

3.
An n-universal graph is a graph that contains as an induced subgraph a copy of every graph on n vertices. It is shown that for each positive integer n > 1 there exists an n-universal graph G on 4n - 1 vertices such that G is a (v, k, λ)-graph, and both G and its complement G¯ are 1-transitive in the sense of W. T. Tutte and are of diameter 2. The automorphism group of G is a transitive rank 3 permutation group, i.e., it acts transitively on (1) the vertices of G, (2) the ordered pairs uv of adjacent vertices of G, and (3) the ordered pairs xy of nonadjacent vertices of G.  相似文献   

4.
Suppose G is a graph of n vertices and diameter at most d having the property that, after deleting any vertex, the resulting subgraph has diameter at most 6. Then G contains at least max{n, (4n - 8)/3} edges if 4 ≤ d ≤ 6.  相似文献   

5.
Some results on spanning trees   总被引:2,自引:0,他引:2  
Some structures of spanning trees with many or less leaves in a connected graph are determined.We show(1) a connected graph G has a spanning tree T with minimum leaves such that T contains a longest path,and(2) a connected graph G on n vertices contains a spanning tree T with the maximum leaves such that Δ(G) =Δ(T) and the number of leaves of T is not greater than n D(G)+1,where D(G) is the diameter of G.  相似文献   

6.
A graph G is diameter 2-critical if its diameter is two, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an association with total domination to prove the conjecture for the graphs whose complements have diameter three.  相似文献   

7.
Even graphs     
A nontrivial connected graph G is called even if for each vertex v of G there is a unique vertex v such that d(v, v ) = diam G. Special classes of even graphs are defined and compared to each other. In particular, an even graph G is called symmetric if d(u, v) + d(u, v ) = diam G for all u, vV(G). Several properties of even and symmetric even graphs are stated. For an even graph of order n and diameter d other than an even cycle it is shown that n ≥ 3d – 1 and conjectured that n ≥ 4d – 4. This conjecture is proved for symmetric even graphs and it is shown that for each pair of integers n, d with n even, d ≥ 2 and n ≥ 4d – 4 there exists an even graph of order n and diameter d. Several ways of constructing new even graphs from known ones are presented.  相似文献   

8.
A graph G is diameter 2-critical if its diameter is 2, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an important association with total domination to prove the conjecture for the graphs whose complements are claw-free.  相似文献   

9.
《Quaestiones Mathematicae》2013,36(3):339-348
Abstract

For n a positive integer and v a vertex of a graph G, the nth order degree of v in G, denoted by degnv, is the number of vertices at distance n from v. The graph G is said to be nth order regular of degree k if, for every vertex v of G, degnv = k. The following conjecture due to Alavi, Lick, and Zou is proved: For n ≥ 2, if G is a connected nth order regular graph of degree 1, then G is either a path of length 2n—1 or G has diameter n. Properties of nth order regular graphs of degree k, k ≥ 1, are investigated.  相似文献   

10.
Given a configuration of pebbles on the vertices of a graph G, a pebbling move consists of taking two pebbles off some vertex v and putting one of them back on a vertex adjacent to v. A graph is called pebbleable if for each vertex v there is a sequence of pebbling moves that would place at least one pebble on v. The pebbling number of a graph G is the smallest integer m such that G is pebbleable for every configuration of m pebbles on G. We prove that the pebbling number of a graph of diameter 3 on n vertices is no more than (3/2)n + O(1), and, by explicit construction, that the bound is sharp. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
How to decrease the diameter of triangle-free graphs   总被引:3,自引:0,他引:3  
Assume that G is a triangle-free graph. Let be the minimum number of edges one has to add to G to get a graph of diameter at most d which is still triangle-free. It is shown that for connected graphs of order n and of fixed maximum degree. The proof is based on relations of and the clique-cover number of edges of graphs. It is also shown that the maximum value of over (triangle-free) graphs of order n is . The behavior of is different, its maximum value is . We could not decide whether for connected (triangle-free) graphs of order n with a positive ε. Received: October 12, 1997  相似文献   

12.
The R-set relative to a pair of distinct vertices of a connected graph G is the set of vertices whose distances to these vertices are distinct. This paper deduces some properties of R-sets of connected graphs. It is shown that for a connected graph G of order n and diameter 2 the number of R-sets equal to V(G) is bounded above by ?n2/4?{\lfloor n^{2}/4\rfloor} . It is conjectured that this bound holds for every connected graph of order n. A lower bound for the metric dimension dim(G) of G is proposed in terms of a family of R-sets of G having the property that every subfamily containing at least r ≥ 2 members has an empty intersection. Three sufficient conditions, which guarantee that a family F=(Gn)n 3 1{\mathcal{F}=(G_{n})_{n\geq 1}} of graphs with unbounded order has unbounded metric dimension, are also proposed.  相似文献   

13.
Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C n while keeping Ω(n 2/3) vertices fixed. For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G. One consequence is that every 3-connected planar graph has a drawing δ such that at most O((nlog n)2/3) vertices are fixed in every untangling of δ.  相似文献   

14.
The Steiner distance of a set S of vertices in a connected graph G is the minimum size among all connected subgraphs of G containing S. For n ≥ 2, the n-eccentricity en(ν) of a vertex ν of a graph G is the maximum Steiner distance among all sets S of n vertices of G that contains ν. The n-diameter of G is the maximum n-eccentricity among the vertices of G while the n-radius of G is the minimum n-eccentricity. The n-center of G is the subgraph induced by those vertices of G having minimum n-eccentricity. It is shown that every graph is the n-center of some graph. Several results on the n-center of a tree are established. In particular, it is shown that the n-center of a tree is a tree and those trees that are n-centers of trees are characterized.  相似文献   

15.
We consider the diameter of a random graph G(np) for various ranges of p close to the phase transition point for connectivity. For a disconnected graph G, we use the convention that the diameter of G is the maximum diameter of its connected components. We show that almost surely the diameter of random graph G(np) is close to if np → ∞. Moreover if , then the diameter of G(np) is concentrated on two values. In general, if , the diameter is concentrated on at most 21/c0 + 4 values. We also proved that the diameter of G(np) is almost surely equal to the diameter of its giant component if np > 3.6.  相似文献   

16.
Heping Zhang 《Order》2010,27(2):101-113
Let G be a plane bipartite graph and M(G){\cal M}(G) the set of perfect matchings of G. A property that the Z-transformation digraph of perfect matchings of G is acyclic implies a partially ordered relation on M(G){\cal M}(G). It was shown that M(G){\cal M}(G) is a distributive lattice if G is (weakly) elementary. Based on the unit decomposition of alternating cycle systems, in this article we show that the poset M(G){\cal M}(G) is direct sum of finite distributive lattices if G is non-weakly elementary; Further, if G is elementary, then the height of distributive lattice M(G){\cal M}(G) equals the diameter of Z-transformation graph, and both quantities have a sharp upper bound é\fracn(n+2)4ù\lceil\frac{n(n+2)}{4}\rceil, where n denotes the number of inner faces of G.  相似文献   

17.
In this paper, we show that n ? 4 and if G is a 2-connected graph with 2n or 2n?1 vertices which is regular of degree n?2, then G is Hamiltonian if and only if G is not the Petersen graph.  相似文献   

18.
A collection 𝒫 of n spanning subgraphs of the complete graph Kn is said to be an orthogonal double cover (ODC) if every edge of Kn belongs to exactly two members of 𝒫 and every two elements of 𝒫 share exactly one edge. We consider the case when all graphs in 𝒫 are isomorphic to some tree G and improve former results on the existence of ODCs, especially for trees G of short diameter and for trees of G on few vertices. © 1997 John Wiley & Sons, Inc. J Combin Designs 5:433–441, 1997  相似文献   

19.
A near perfect matching is a matching saturating all but one vertex in a graph. Let G be a connected graph. If any n independent edges in G are contained in a near perfect matching where n is a positive integer and n(|V(G)|-2)/2, then G is said to be defect n-extendable. If deleting any k vertices in G where k|V(G)|-2, the remaining graph has a perfect matching, then G is a k-critical graph. This paper first shows that the connectivity of defect n-extendable graphs can be any integer. Then the characterizations of defect n-extendable graphs and (2k+1)-critical graphs using M-alternating paths are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号