首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some recently developed geometric methods for characterizing the subset of density matrices within the space of Hermitian matrices are compared with methods commonly used for the approximate characterization of reduced density matrices. The decomposition of a density matrix into components in terms of the reducing basis set is compared with decomposition in terms of representations of U(r).  相似文献   

2.
The direct energy functional minimization problem in electronic structure theory, where the single-particle orbitals are optimized under the constraint of orthogonality, is explored. We present an orbital transformation based on an efficient expansion of the inverse factorization of the overlap matrix that keeps orbitals orthonormal. The orbital transformation maps the orthogonality constrained energy functional to an approximate unconstrained functional, which is correct to some order in a neighborhood of an orthogonal but approximate solution. A conjugate gradient scheme can then be used to find the ground state orbitals from the minimization of a sequence of transformed unconstrained electronic energy functionals. The technique provides an efficient, robust, and numerically stable approach to direct total energy minimization in first principles electronic structure theory based on tight-binding, Hartree-Fock, or density functional theory. For sparse problems, where both the orbitals and the effective single-particle Hamiltonians have sparse matrix representations, the effort scales linearly with the number of basis functions N in each iteration. For problems where only the overlap and Hamiltonian matrices are sparse the computational cost scales as O(M2N), where M is the number of occupied orbitals. We report a single point density functional energy calculation of a DNA decamer hydrated with 4003 water molecules under periodic boundary conditions. The DNA fragment containing a cis-syn thymine dimer is composed of 634 atoms and the whole system contains a total of 12,661 atoms and 103,333 spherical Gaussian basis functions.  相似文献   

3.
4.
Despite the fact that idempotent one-particle reduced density matrices are pervasive in quantum chemistry, the understanding of a general energy functional of such idempotent density matrices for the ground state energy has been lacking. By a constrained search, we show the structure of the general functional, illuminating the contributions from various terms. For the examples of the "best idempotent density matrix" and Kohn-Sham idempotent density matrices, we contrast the functional forms and suggest how the best idempotent density matrix approach may be a good starting point for further development.  相似文献   

5.
In this work, we propose a partitioning of the first-order reduced density matrix corresponding to an N-electron system into first-order reduced density matrices associated with regions defined in the real space (regional matrices). The treatment is based on an isopycnic orbital localization transformation that provides regional matrices that are diagonalized by identical localized orbitals, having many attributes associated with chemical concepts (appropriate localization in space, high transferability, etc.). Although the obtained numerical values are similar to those arising from previous studies, their interpretation is more rigorous and the computational cost is much lower.  相似文献   

6.
We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.  相似文献   

7.
A direct method of minimization of the energy expression for closed and open shell systems in LCAO-MO density matrix formalism is presented. The method makes use of a unitary transformation acting directly on the density matrices. Expressions of the gradient and second energy derivatives are worked out. Some preliminary calculations to test the rate of minimization using a variable metric method have been made on H2S and SO molecules and have given satisfactory results.[/p]  相似文献   

8.
9.
In this work, we present the mapping formulae for the contraction of the third-order reduced density matrices represented in the basis of the irreducible representations (IR) of the symmetric group S3 into the second-order ones which are represented in the basis of the IR of group S2. These algorithms, which can be useful in several fields, have been applied for the approximation of reduced density matrices within the spin-adapted reduced Hamiltonian theory. Some results obtained with this procedure are also presented.  相似文献   

10.
A method of calculation of the correlation energy is proposed, which includes the superposition of configurations and the two particle approach. This method is based on the density matrix formalism. The approximate, but N-representable expressions for the reduced density matrices are used. The correlation energy of the beryllium atom is calculated as an example.  相似文献   

11.
Direct product basis functions are frequently used in quantum dynamics calculations, but they are poor in the sense that many such functions are required to converge a spectrum, compute a rate constant, etc. Much better, contracted, basis functions, that account for coupling between coordinates, can be obtained by diagonalizing reduced dimension Hamiltonians. If a direct product basis is used, it is advantageous to use discrete variable representation (DVR) basis functions because matrix representations of functions of coordinates are diagonal in the DVR. By diagonalizing matrices representing coordinates it is straightforward to obtain the DVR that corresponds to any direct product basis. Because contracted basis functions are eigenfunctions of reduced dimension Hamiltonians that include coupling terms they are not direct product functions. The advantages of contracted basis functions and the advantages of the DVR therefore appear to be mutually exclusive. A DVR that corresponds to contracted functions is unknown. In this paper we propose such a DVR. It spans the same space as a contracted basis, but in it matrix representations of coordinates are diagonal. The DVR basis functions are chosen to achieve maximal diagonality of coordinate matrices. We assess the accuracy of this DVR by applying it to model four-dimensional problems.  相似文献   

12.
Based on the analysis of the general properties for the one‐ and two‐particle reduced density matrices, a new natural orbital functional is obtained. It is shown that by partitioning the two‐particle reduced density matrix in an antisymmeterized product of one‐particle reduced density matrices and a correction Γc we can derive a corrected Hartree–Fock theory. The spin structure of the correction term from the improved Bardeen–Cooper–Schrieffer theory is considered to take into account the correlation between pairs of electrons with antiparallel spins. The analysis affords a nonidempotent condition for the one‐particle reduced density matrix. Test calculations of the correlation energy and the dipole moment of several molecules in the ground state demonstrate the reliability of the formalism. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 317–323, 2003  相似文献   

13.
Starting from the equation of motion in the density matrix formulation, we reformulate the analytical gradient of the excited-state energy at the time-dependent density functional theory level in the nonorthogonal Gaussian atom-centered orbital (AO) basis. Analogous to the analytical first derivative in molecular-orbital (MO) basis, a Z-vector equation has been derived with respect to the reduced one-electronic density matrix in AO basis, which provides a potential possibility to exploit quantum locality of the density matrix and avoids the matrix transformation between the AO and the MO basis. Numerical tests are finished for the excited-state geometry optimization and adiabatic excitation energy calculation of a series of small molecules. The results demonstrate the computational efficiency and accuracy of the current AO-based energy gradient expression in comparison with the MO-based scheme.  相似文献   

14.
Avoided crossing of adiabatic potential energy curves is considered. A new scheme for the adiabatic-diabatic transformation is developed that is based on an interpolation performed on reduced one-electron density matrices. The procedure is tested on the N2 molecule.  相似文献   

15.
The ground-state energy of the beryllium atom is calculated using a variational procedure in which the elements of the two-body reduced density matrix (particle–particle matrix) are the variational parameters. It is shown that, for this problem and with the limited number of spin-orbitals used, the trace condition and the simultaneous nonnegativity conditions on the particle–particle, the particle–hole, and the hole–hole matrices form a complete solution to the N-representability problem. The energy obtained is – 14.61425 a.u., practically identical to the value given by a configuration interaction calculation which uses the same states. The effects of weakening the nonnegativity conditions on each of the matrices in turn were also explored.  相似文献   

16.
Based on self-consistent-field (SCF) perturbation theory, we recast the SCF and the coupled-perturbed SCF (CPSCF) equations for time-independent molecular properties into the atomic-orbital basis. The density matrix and the perturbed density matrix are obtained iteratively by solving linear equations. Only matrix multiplications and additions are required, and this approach can exploit sparse matrix multiplications and thereby offer the possibility of evaluating second-order properties in computational effort that scales linearly with system size. Convergence properties are similar to conventional molecular-orbital-based CPSCF procedures, in terms of the number of derivative Fock matrices that must be constructed. We also carefully address the issue of the numerical accuracy of the calculated second derivatives of the energy, in order to specify the minimum precision necessary in the CPSCF procedure. It is found that much looser tolerances for the perturbed density matrices are adequate when using an expression for the second derivatives that is correct through second order in the CPSCF error.  相似文献   

17.
A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian, called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic energies in terms of the singlet diabatic energies via Slater's rules and assuming constant ratios of Coulomb to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow one to deal with multibond reactions without having to include high-energy diabatic states. The global transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is constructed as the product of channel-specific transformation matrices, each one taken as the product of an asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions in a manner that provides a multibond generalization of the switch between Hund's cases in diatomic spectroscopy. The spin-orbit matrix elements in this representation are taken equal to their atomic values times a scaling function that depends on the internuclear distances. The spin-valence diabatic potential energy matrix is suitable for semiclassical dynamics simulations. Diagonalization of this matrix produces the spin-coupled adiabatic energies. For the sake of illustration, diabatic potential energy matrices are constructed along bond-fission coordinates for the HBr and the BrCH(2)Cl molecules. Comparison of the spin-coupled adiabatic energies obtained from the spin-valence diabatics with those obtained by ab initio calculations with geometry-dependent spin-orbit matrix elements shows that the new method is sufficiently accurate for practical purposes. The method formulated here should be most useful for systems with a large number of atoms, especially heavy atoms, and/or a large number of spin-coupled electronic states.  相似文献   

18.
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography.  相似文献   

19.
Summary Fukutome's group theoretical classification scheme for determinants, based on the transformation properties of the Fock-Dirac density matrix under spin rotations and time reversal, has been extended to momentum space. Particular attention is paid to the transformation properties of orbitals and density matrices under inversion in momentum space.  相似文献   

20.
This report constitutes an application of our previous theoretical works on partitionings of the first-order reduced density matrix according to the atomic domains defined in the theory of atoms in molecules. The numerical determinations obtained reveal that the domain-restricted reduced density matrices, which are the tools resulting from the former treatments, are suitable devices to describe chemical features of molecular fragments. We have focused attention on a study of functional groups in several series of organic compounds confirming the usefulness of these tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号