首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basis set expansion and correlation effects on the computed proton affinities of the oxygen and nitrogen bases CH3OH, H2CO, CO, CH3NH2, CH2NH, and HCN have been evaluated. Basis set enhancements lead to systematic changes in computed proton affinities. These effects appear to be additive, and are greater for correlated proton affinities than for Hartree-Fock energies. Inclusion of correlation decreases proton affinities, with fourth-order Møller-Plesset energies bracketed by second and third order energies.  相似文献   

2.
The FOGO method is used to calculate proton affinities and lithium cation affinities. The molecules of primary interest in this study are the methyl-substituted amines. In addition, the lithium cation affinity of HF, H2O, CH3OH, H2CO, and HCN are calculated for comparison. Geometries of all species are fully optimized with a double-zeta (DZ) basis set, including polarization on hydrogen and the first-row elements by floating orbitals. Comparison with experimental values demonstrates that structural data and proton affinities resulting from this type of ab initio calculation are of chemical accuracy. The lithium cation affinities are also reasonably well reproduced, but the small experimental differences are not within the accuracy, which can be expected from this type of calculation.  相似文献   

3.
The protonation energies of NH3 and H2O have been computed using a variety of basis sets. It is found that the effect of election correlation on these energies cannot reliably be determined without the use of large (triple-split and polarized) basis sets.  相似文献   

4.
Basis set expansion and correlation effects on computed hydrogen bond energies of the positive ion complexes AHn · AHn + 1+1, for AHn = NH3, OH2 and FH, have been evaluated. The addition of diffuse functions on nonhydrogen atoms is the single most important enhancement of split-valence plus polarization basis sets for computing hydrogen bond energies. Basis set enhancement effects appear to be additive in these systems. The correlation energy contribution to the stabilization energies of these complexes is significant, with the second order term being the largest term and having a stabilizing effect. The third order term is smaller and of opposite sign, while the fourth order term is smaller yet and stabilizing. As a result, computed MP4 stabilization energies are bracketed by the MP2 and MP3 energies. The overall effect of basis set enhancement is to decrease hydrogen bond energies, whereas the addition of electron correlation increases stabilization energies.  相似文献   

5.
Geometries have been optimized using molecular-orbital calculations (a) with a 4-31G Gaussian basis set for carbanions CH2X? where X = H, CH3, NH2, OH, F, C?CH, CH?CH2, CHO, COCH3, CN, and NO2; and (b) with an STO -3G basis set for methyl acetate and acetyl deprotonated methyl acetate. All the carbanions containing unsaturated substituents are planar, with a considerable shortening of the C? X bond. Carbanions containing saturated substituents are pyramidal with the out-of-plane angle α increasing with the electronegativity of the substituent. Double-zeta basis set calculations give proton affinities over the range 449 (for CH3CH2?) to 355 kcal/mol (for CH2NO2?), with all unsaturated anions having smaller affinities than saturated anions. The correlation of proton affinities with 1s binding energies, and with charges on both the carbon of the anion and on the acidic proton of the neutral molecule are examined.  相似文献   

6.
M.C. Lin 《Chemical physics》1975,7(3):442-448
CO laser emission was detected in the vacuum UV flash photolysis of CH2CO. The emission is attributed to the initial photodissociation reaction
Addition of O2 to the CH2CO system caused a pronounced enhancement in the laser intensity. This effect is believed to be due to the removal of the CH2 + CH2CO reaction, which produces uninverted CO molecules. A greater laser output was obtained when SO2 was used instead of O2. In the O2-added system, a total of 16 transitions ranging from Δv(8→7) to (4→3) were identified. Addition of SO2 increased the total number of lines to 34, lasing in the range between (11→10) and (4→3). This enhancement is ascribed to the occurrence of the reaction
In addition to these chemical effects, the effects of flash energy, inert gases and total pressures have been investigated.  相似文献   

7.
The FOGO method is used to calculate absolute proton affinities of the molecules H2, HF, NH3, H2O, CH3OH, C2H5OH, H2O2, CH2O, CO, and CH2CO. Comparison with experimental values demonstrates that the geometrical and energetical data resulting from this type of ab initio calculation are of chemical accuracy. Predictive data for higher energy isomers, such as hydroxymethylene and ethynol are given as possible aid for the identification of these species.  相似文献   

8.
The nitrogen protonation energies of the imino bases HN?CHR, where R is H, CH3, NH2, OH, and F, have been evaluated to determine the dependence of absolute and relative protonation energies on geometry, basis set, and correlation effects. Reliable absolute protonation energies require a basis set larger than a split-valence plus polarization basis, the inclusion of correlation, and optimized geometries of at least Hartree–Fock 4-31G quality. Consistent relative protonation energies can be obtained at the Hartree–Fock level with smaller basis sets. Extending the split-valence basis set by the addition of polarization functions on all atoms decreases the computed absolute Hartree–Fock nitrogen protonation energies of the imino bases HN?CHR except when R is F, but increases the oxygen protonation energies of the carbonyl bases O?CHR.  相似文献   

9.
The protonation energies of H2CO and its monosubstituted derivatives RCHO, where R is CH3, NH2, OH, and F, have been evaluated at various levels of theory to determine the dependence of absolute and relative protonation energies on geometry, basis set, and correlation effects. Reliable absolute protonation energies require at least a basis set as large as 6-31G7, the inclusion of correlation, and optimized Hartree—Fock 6-31G1 geometries. Consistent relative protonation energies can be obtained at the Hartree—Fock level with smaller basis sets.  相似文献   

10.
11.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

12.
Ab initio calculations were carried out to study the potential energy surface of (H3C? H? CH3)?. The 6–31G* basis set is supplemented by a set of diffuse p functions on both C and H (with a range of exponents for the latter). The binding energy of CH4 and CH3? to form the (H3CH? CH3)? complex is about 2 kcal/mol, much smaller than for comparable ionic H-bonded systems involving O or N atoms. Nearly half of this interaction energy is due to correlation effects, computed at second and third orders of Møller-Plesset perturbation theory. Correlation is also responsible for substantial reductions in the energy barrier to proton transfer within the complex. This barrier is computed to be 13?15 kcal/mol at the MP3 level, depending upon the exponent used for the H p functions.  相似文献   

13.
Ab initio molecular orbital calculations using an 8 s , 3 p ; 3 s Gaussian basis set, with contraction, have been used to study a series of primary amines XNH2, where X = H, CH3, OH, F, CN, CHO, and NO2. The geometries of the corresponding ammonium ions have been optimised and the energy differences have been used to estimate relative proton affinities. The 1 s orbital energies for both the amines and ammonium ions, when corrected for the effects of charges on the other atoms in the molecule by use of an ESCA equation, give a good correlation with the computed charge on the nitrogen atom.  相似文献   

14.
The mechanism of the reaction of ketene with methyl radical has been studied by ab initio CCSD(T)‐F12/cc‐pVQZ‐f12//B2PLYPD3/6‐311G** calculations of the potential energy surface. Temperature‐ and pressure‐dependent reaction rate constants have been computed using the Rice–Ramsperger–Kassel–Marcus (RRKM)–Master Equation and transition state theory methods. Three main channels have been shown to dominate the reaction; the formation of the collisionally stabilized CH3COCH2 radical and the production of the C2H5 + CO and HCCO + CH4 bimolecular products. Relative contributions of the CH3COCH2, C2H5 + CO, and HCCO + CH4 channels strongly depend on the reaction conditions; the formation of thermalized CH3COCH2 is favored at low temperatures and high pressures, HCCO + CH4 is dominant at high temperatures, whereas the yield of C2H5 + CO peaks at intermediate temperatures around 1000 K. The C2H5 + CO channel is favored by a decrease in pressure but remains the second most important reaction pathway after HCCO + CH4 under typical flame conditions. The calculated rate constants at different pressures are proposed for kinetic modeling of ketene reactions in combustion in the form of modified Arrhenius expressions. Only rate constant to form CH3COCH2 depends on pressure, whereas those to produce C2H5 + CO and HCCO + CH4 appeared to be pressure independent.  相似文献   

15.
Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH2 with ketene CH2CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice–Ramsperger–Kassel–Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH3 and C2H4 + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C2H4 + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH2COCH2 intermediate or along the pathway of CO elimination from the initial CH2CH2CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C2H4 + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH3CHCO and cyclic CH2COCH2 intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300–3000 K, which are proposed for kinetic modeling of ketene reactions in combustion. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
The lithiation of 2,7-dihydrodinaphthoheteroepines (5) with 2.2 equiv of lithium naphthalenide in THF at −78 °C gives dianionic intermediates 8, which by reaction with different electrophiles [H2O, D2O, tBuCHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO] at the same temperature, followed by hydrolysis, leads to unsymmetrically 2,2′-disubstituted binaphthyls 6. When the lithiation is performed with an excess of lithium in the presence of a catalytic amount of 4,4′-di-tert-butylbiphenyl (DTBB, 10 mol %), a double reductive cleavage takes place to give dianionic intermediate 9, which by reaction with different electrophiles [H2O, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO], followed by hydrolysis with water, yields symmetrically 2,2′-disubstituted binaphthyls 7. In the case of starting from (R)-5a, the reductive opening by treatment with 2.2 equiv of lithium naphthalenide followed by reaction with H2O or (CH2)5CO as electrophiles and final hydrolysis, leads to enantiomerically pure compounds (R)-6aa and (R)-6af, respectively.  相似文献   

17.
Vertical proton affinities were calculated with closed and open shell direct SCF-MO methods for the ground, excited triplet and ionized doublet states of CH2O and CH2OH+.The computed gas phase basicity of CH2O follows the order: CH2O(1 A 1) > CH2O*(3 A 1 or 3 A 2) > CH2O+(2 B 2 or 2 B 1).  相似文献   

18.
The 4,4′di-tert-butylbiphenyl (DTBB)-catalysed lithiation of dihydrodibenzothiepine (1) at −78 °C for 30 min followed by reaction with a carbonyl compound [tBuCHO, Ph(CH2)2CHO, PhCHO, (n-C5H11)2CO, (CH2)5CO, (CH2)7CO, (−)-menthone] at the same temperature leads, after hydrolysis with 3 M hydrochloric acid, to sulphanyl alcohols 2. If after addition of a carbonyl compound as the first electrophile [Me2CO, (CH2)5CO, (−)-menthone], the resulting dianion of type II is allowed to react at room temperature for 30 min, a second lithiation takes place to give an intermediate of type III, which by reaction with a second electrophile [Me2CO, Et2CO, (CH2)5CO, ClCO2Et], yields, after hydrolysis, difunctionalised byphenyls 4. The cyclisation of the sulphanyl alcohol 2c under acidic conditions yields the eight-membered sulphur containing heterocycle 3. The lithiation of dihydrodinaphthoheteroepines 7 and 10 with 2.2 equiv of lithium naphthalenide in THF at −78 °C followed by reaction with different electrophiles [H2O, D2O, tBuCHO, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO] at the same temperature leads, after hydrolysis, to unsymmetrically 2,2′-disubstituted binaphthyls 9 and 12, respectively. When the lithiation is performed with an excess of lithium in the presence of a catalytic amount of DTBB (10% molar), a double reductive cleavage takes place to give the dianionic intermediate VII, which by reaction with different electrophiles [H2O, Me2CO, Et2CO, (CH2)4CO, (CH2)5CO], followed by hydrolysis with water, yields symmetrically 2,2′-disubstituted binaphthyls 8 and 11. In the case of starting from (R)- or (S)-dihydrodinaphthoheteroepines 7 and 10, these methodologies allow us to prepare enantiomerically pure compounds 8, 11 and 12.  相似文献   

19.
The dissociative photoionization of molecular‐beam cooled CH2CO in a region of ?10–20 eV was investigated with photoionization mass spectrometry using a synchrotron radiation as the light source. Photoionization efficiency curves of CH2CO+ and of observed fragment ions CH2+, CHCO+, HCO+, C2O+, CO+, and C2H2+ were measured to determine their appearance energies. Relative branching ratios as a function of photon energy were determined. Energies for formation of these observed fragment ions and their neutral counterparts upon ionization of CH2CO are computed with the Gaussian‐3 method. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. The principal dissociative processes are direct breaking of C=C and C‐H bonds to form CH2+ + CO and CHCO+ + H, respectively; at greater energies, dissociation involving H migration takes place.  相似文献   

20.
《中国化学快报》2023,34(7):107809
Comprehensive fundamental understanding of CO hydrogenation reactions over Cu and ZnCu alloy surfaces is of great importance. Herein, we report a comparative DFT calculation study of elementary surface reaction network of CO hydrogenation reactions on stepped Cu(211), Cu(611), ZnCu(211) and ZnCu(611) surfaces. On ZnCu(211) and ZnCu(611) surfaces, the energetic favorable reaction path of CO hydrogenation reaction follows CO* → HCO* → H2CO* → H3CO* → CH3OH* → CH3OH with H3CO* hydrogenation as the rate-limiting step and proceeds more facilely on ZnCu(611) surface than on ZnCu(211) surface. On Cu(211) and Cu(611) surfaces, the energetic favorable reaction path of CO hydrogenation reaction follows CO* → HCO* → HCOH* → H2COH* → H3COH* → CH3* → CH4* → CH4 with H2COH* hydrogenation as the rate-limiting step and proceeds more facilely on Cu(611) than on Cu(211). The key difference of CO hydrogenation reaction on ZnCu alloy surface and Cu is that the resulting CH3OH* species desorbs to produce CH3OH on ZnCu alloy but undergoes H*-assisted decomposition to CH3* and eventually to CH4 on Cu surface. These results successfully unveil elementary surface reaction networks and structure sensitivity of Cu and ZnCu alloy-catalyzed CO hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号