首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Rate constants for the gas-phase reactions of O3 with a series of monoterpenes and related compounds have been determined at 296 ± 2 K and 740 torr total pressure of air or O2 using a combination of absolute and relative rate techniques. Good agreement between the absolute and relative rate data was observed, and the rate constants obtained (in units of 10?17 cm3 molecule?1 s?1) were: α-pinene, 8.7; β-pinene, 1.5; Δ3-carene, 3.8; 2-carene, 24; sabinene, 8.8; d-limonene, 21; γ-terpinene, 14; terpinolene, 140; α-phellandrene, 190; α-terpinene, 870; myrcene, 49; trans-ocimene, 56; p-cymene, <0.005; and 1,8-cineole, <0.015. While these rate constants for α- and β-pinene and sabinene are in good agreement with recent absolute and relative rate determinations, those for the other monoterpenes are generally lower than the literature data by factors of ca. 2–10. The measured rate constants for the monoterpenes are reasonably consistent with predictions based upon the number and positions of the substituent groups around the 〉C?C〈 bond(s).  相似文献   

2.
Rate constants for the gas-phase reactions of O3 with the sesquiterpenes α-cedrene, α-copaene, β-caryophyllene, α-humulene, and longifolene, and with the monoterpenes limonene, terpinolene, α-phellandrene, and α-terpinene, have been measured using a relative rate technique at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in units of 10?17 cm3 molecule?1 s?1) are: limonene, 20.1 ± 5.1; terpinolene, 188 ± 67; α-phellandrene, 298 ± 105; α-terpinene, 2110 ± 770; α-cedrene, 2.78 ± 0.71; α-copaene, 15.8 ± 5.6; β-caryophyllene, 1160 ± 430; α-humulene, 1170 ± 450; and longifolene, <0.07, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference organics. Hydroxyl radical formation yields were also determined for the O3 reactions with the sesquiterpenes, of 0.67 for α-cedrene, 0.35 for α-copaene, 0.06 for β-caryophyllene, and 0.22 for α-humulene, all with estimated overall uncertainties of a factor of ca. 1.5. The tropospheric lifetimes of the sesquiterpenes due to reaction with O3 are calculated. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Rate constants for the gas-phase reactions of O(3P) atom with a series of monoterpenes have been determined at ambient temperature (ca. 302–309 K) and atmospheric pressure using a relative rate technique. Using the literature rate constants for O(3P) + isobutene, cis and trans-2-butene, 3-methyl-1-butene, 2-methyl-2-butene, and 2,3-dimethyl-2-butene as the standards, the O(3P) rate constants derived for the terpenes (in units of 10−11 cm3 molecule−1s −1) are 2.8 ± 0.4 for α-pinene, 2.8 ± 0.5 for β-pinene, 3.1 ± 0.5 for Δ 3-carene, 3.5 ± 0.5 for 2-carene, 2.6 ± 0.5 for camphene, 7.6 ± 1.2 for d-limonene, 9.0 ± 1.6 for γ-terpinene, and 10.7 ± 1.6 for terpinolene. The relative rate constants in this work agreed with literature values to within ± 10% for the standard alkenes, and to within ± ca. 35% for the terpenes. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Relative rate constants for the reaction of OH radicals with a series of n-alkanes have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1s?1, the rate constants obtained are (X1012 cm3 molecule?1 s?1): propane 1.22 ± 0.05, n-pentane 4.13 ± 0.08, n-heptane 7.30 ± 0.17, n-octane 9.01 ± 0.19, n-nonane 10.7 ± 0.4, and n-decane 11.4 ± 0.6. The data for propane, n-pentane, and n-octane are in good agreement with literature values, while those for n-heptane, n-nonane, and n-decane are reported for the first time. These data show that the rate constant per secondary C—H bond is ∽40% higher for —CH2— groups bonded to two other —CH2— groups than for those bonded to a —CH2— group and a —CH3 group.  相似文献   

5.
Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10?10 for reaction with the OH radical; (2.72 ± 0.83) × 10?13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10?17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10?11 for reaction with the OH radical; (2.46 ± 0.75) × 10?13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10?17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10?11 for reaction with the OH radical; (1.21 ± 0.44) × 10?14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10?18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10?10 for reaction with the OH radical; (1.12 ± 0.40) × 10?11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10?16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Rate constants for the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α,β-unsaturated aldehydes have been determined at 298 ± 2 K using a relative rate technique. Using rate constants for the reactions of NO3 radicals with ethene and propene of (1.1 ± 0.5) × 10?16 cm3 molecule?1 s?1 and (7.5 ± 1.6) × 10?15 cm3 molecule?1 s?1, respectively, the following rate constants (in units of 10?16 cm3 molecule?1 s?1) were obtained: acetylene, ≤0.23; propyne, 0.94 ± 0.44; vinyl chloride, 2.3 ± 1.1; 1,1-dichloroethene, 6.6 ± 3.1; cis-1,2-dichloroethene, 0.75 ± 0.35; trans-1,2-dichloroethene, 0.57 ± 0.27; trichloroethene, 1.5 ± 0.7; tetrachloroethene, <0.4; allyl chloride, 2.9 ± 1.3; acrolein, 5.9 ± 2.8; and crotonaldehyde, 41 ± 9. The atmospheric implications of these data are discussed.  相似文献   

7.
Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3 molecule?1 s?1, the rate constants obtained are (× 1012 cm3 molecule?1 s?1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C? H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.  相似文献   

8.
The yields of C5 and C6 alkyl nitrates from neopentane, 2-methylbutane, 2-methylpentane, 3-methylpentane, and cyclohexane have been measured in irradiated CH3ONONO-alkane-air mixtures at 298 ± 2 K and 735-torr total pressure. Additionally, OH radical rate constants for neopentyl nitrate, 3-nitro-2-methylbutane, 2-nitro-2-methylpentane, 2-nitro-3-methylpentane, and cyclohexyl nitrate, relative to that for n-butane, have been determined at 298 ± 2 K. Using a rate constant for the reaction of OH radicals with n-butane of 2.58 × 10?12 cm3 molecule?1 s?1, these OH radical rate constants are (in units of 10?12 cm3 molecule?1 s?1): neopentyl nitrate, 0.87 ± 0.21; cyclohexyl nitrate, 3.35 ± 0.36; 3-nitro-2-methylbutane, 1.75 ± 0.06; 2-nitro-2-methylpentane, 1.75 ± 0.22; and 2-nitro-3-methylpentane, 3.07 ± 0.08. After accounting for consumption of the alkyl nitrates by OH radical reaction and for the yields of the individual alkyl peroxy radicals formed in the reaction of OH radicals with the alkanes studied, the alkyl nitrate yields (which reflect the fraction of the individual RO2 radicals reacting with NO to form RONO2) determined were: neopentyl nitrate, 0.0513 ± 0.0053; cyclohexyl nitrate, 0.160 ± 0.015; 3-nitro-2-methylbutane, 0.109 ± 0.003; 2-nitro-2methylbutane, 0.0533 ± 0.0022; 2-nitro-2-methylpentane, 0.0350 ± 0.0096; 3- + 4-nitro-2-methylpentane, 0.165 ± 0.016; and 2-nitro-3-methylpentane, 0.140 ± 0.014. These results are discussed and compared with previous literature values for the alkyl nitrates formed from primary and secondary alkyl peroxy radicals generated from a series of n-alkanes.  相似文献   

9.
Rate constants for the reactions of 2‐methoxy‐6‐(trifluoromethyl)pyridine, diethylamine, and 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol with OH radicals have been measured at 298 ± 2 K using a relative rate method. The measured rate constants (cm3 molecule?1 s?1) are (1.54 ± 0.21) × 10?12 for 2‐methoxy‐6‐(trifluoromethyl)pyridine, (1.19 ± 0.25) × 10?10 for diethylamine, and (1.76 ± 0.38) × 10?12 for 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol, where the indicated errors are the estimated overall uncertainties including those in the rate constants for the reference compounds. No reaction of 2‐methoxy‐6‐(trifluoromethyl)pyridine with gaseous nitric acid was observed, and an upper limit to the rate constant for the reaction of 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol with O3 of <7 × 10? 20 cm3 molecule?1 s?1 was determined. Using a 12‐h average daytime OH radical concentration of 2 × 106 molecule cm?3, the lifetimes of the volatile organic compounds studied here with respect to reaction with OH radicals are 7.5 days for 2‐methoxy‐6‐(trifluoromethyl)pyridine, 1.2 h for diethylamine, and 6.6 days for 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol. Likely reaction mechanisms are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 631–638, 2011  相似文献   

10.
Rate constants for the gas phase reactions of O3 and OH radicals with 1,3-cycloheptadiene, 1,3,5-cycloheptatriene, and cis- and trans-1,3,5-hexatriene and also of O3 with cis-2,trans-4-hexadiene and trans -2,trans -4-hexadiene have been determined at 294 ± 2 K. The rate constants determined for reaction with O3 were (in cm3 molecule-1s?1 units): 1,3-cycloheptadiene, (1.56 ± 0.21) × 10-16; 1,3,5-cycloheptatriene, (5.39 ± 0.78) × 10?17; 1,3,5-hexatriene, (2.62 ± 0.34) × 10?17; cis?2,trans-4-hexadiene, (3.14 ± 0.34) × 10?16; and trans ?2, trans -4-hexadiene, (3.74 ± 0.61) × 10?16; with the cis- and trans-1,3,5-hexatriene isomers reacting with essentially identical rate constants. The rate constants determined for reaction with OH radicals were (in cm3 molecule?1 s?1 units): 1,3-cycloheptadiene, (1.31 ± 0.04) × 10?10; 1,3,5-cycloheptatriene, (9.12 × 0.23) × 10?11; cis-1,3,5-hexatriene, (1.04 ± 0.07) × 10?10; and trans 1,3,5-hexatriene, (1.04 ± 0.17) × 10?10. These data, which are the first reported values for these di- and tri-alkenes, are discussed in the context of previously determined O3 and OH radical rate constants for alkenes and cycloalkenes.  相似文献   

11.
The reaction mechanisms for oxidation of CH3CCl2 and CCl3CH2 radicals, formed in the atmospheric degradation of CH3CCl3 have been elucidated. The primary oxidation products from these radicals are CH3CClO and CCl3CHO, respectively. Absolute rate constants for the reaction of hydroxyl radicals with CH3CCl3 have been measured in 1 atm of Argon at 359, 376, and 402 K using pulse radiolysis combined with UV kinetic spectroscopy giving ??(OH + CH3CCl3) = (5.4 ± 3) 10?12 exp(?3570 ± 890/RT) cm3 molecule?1 s?1. A value of this rate constant of 1.3 × 10?14 cm3 molecule?1 s?1 at 298 K was calculated using this Arrhenius expression. A relative rate technique was utilized to provide rate data for the OH + CH3 CCl3 reaction as well as the reaction of OH with the primary oxidation products. Values of the relative rate constants at 298 K are: ??(OH + CH3CCl3) = (1.09 ± 0.35) × 10?14, ??(OH + CH3CClO) = (0.91 ± 0.32) × 10?14, ??(OH + CCl3CHO) = (178 ± 31) × 10?14, ??(OH + CCl2O) < 0.1 × 10?14; all in units of cm3 molecule?1 s?1. The effect of chlorine substitution on the reactivity of organic compounds towards OH radicals is discussed.  相似文献   

12.
Using a relative rate method, rate constants have been determined at 296 ± 2 K for the gas-phase reactions of the OH radical with toluene, the xylenes, and the trimethylbenzenes. Using the recommended literature rate constant for the reaction of OH radicals with propene of (2.66 ± 0.40) × 10?11 cm3 molecule?1 s?1, the following rate constants (in units of 10?12 cm3 molecule?1 s?1) were obtained: toluene, 5.48 ± 0.84; o-xylene, 12.2 ± 1.9; m-xylene, 23.0 ± 3.5; p-xylene, 13.0 ± 2.0; 1,2,3-trimethylbenzene, 32.7 ± 5.3; 1,2,4-trimethylbenzene, 32.5 ± 5.0; and 1,3,5-trimethylbenzene, 57.5 ± 9.2. These data are compared with the literature values.  相似文献   

13.
We have developed a technique for generating high concentrations of gaseous OH radicals in a reaction chamber. The technique, which involves the UV photolysis of O3 in the presence of water vapor, was used in combination with the relative rate method to obtain rate constants for reactions of OH radicals with selected species. A key improvement of the technique is that an O3/O2 (3%) gas mixture is continuously introduced into the reaction chamber, during the UV irradiation period. An important feature is that a high concentration of OH radicals [(0.53–1.2) × 1011 radicals cm?3] can be produced during the irradiation in continuous, steady‐state experiment. Using the new technique in conjunction with the relative rate method, we obtained the rate constant for the reaction of CHF3 (HFC‐23) with OH radicals, k1. We obtained k1(298 K) = (3.32 ± 0.20) × 10?16 and determined the temperature dependence of k1 to be (0.48 ± 0.13) × 10?12 exp[?(2180 ± 100)/T] cm3 molecule?1 s?1 at 253–328 K using CHF2CF3 (HFC‐125) and CHF2Cl (HCFC‐22) as reference compounds in CHF3–reference–H2O gas mixtures. The value of k1 obtained in this study is in agreement with previous measurements of k1. This result confirms that our technique for generating OH radicals is suitable for obtaining OH radical reaction rate constants of ~10?16 cm3 molecule?1 s?1, provided the rate constants do not depend on pressure. In addition, it also needed to examine whether the reactions of sample and reference compound with O3 interfere the measurement when selecting this technique. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 317–325, 2003  相似文献   

14.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

15.
The rate constants for the gas-phase reactions between methylethylether and hydroxyl radicals (OH) and methylethylether and chlorine atoms (Cl) have been determined over the temperature range 274–345 K using a relative rate technique. In this range the rate constants vary little with temperature and average values of kMEE+OH = (6.60−2.62+3.88) × 10−12 cm3 molecule−1 s−1 and kMEE+Cl= (34.9 ± 6.7) × 10−11 cm3 molecule−1 s−1 were obtained. The atmospheric lifetimes of methylethylether have been estimated with respect to removal by OH radicals and Cl atoms to be ca. 2 days and ca. 30–40 days, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 231–236, 1997.  相似文献   

16.
Absolute rate constants for the gas phase reaction of OH radicals with pyrrole (k1) and thiophene (k2) have been measured over the temperature ranges 298–440 and 274–382 K, respectively, using the flash photolysis-resonance fluorescence technique. The rate constants obtained were independent of the total pressure of argon diluent over the range 25–100 torr andwere fit by the Arrhenius expressions and with rate constants at 298 ± 2 K of k1 = (1.03 ± 0.06) × 10?10 cm3 molecule?1 s?1 and k2 = (8.9 ± 0.7) × 10?12 cm3 molecule?1 s?1. [These errors represent two standard deviations (systematic errors could constitute an additional ca. 10% uncertainty)]. These results are discussed with respect to the previous literature data and the atmospheric lifetimes of pyrrole and thiophene.  相似文献   

17.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

18.
The kinetics of the gas-phase reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with O3 and with OH radicals have been studied at 295 ± 1 K in one atmosphere of air. Upper limit rate constants for the O3 reactions of <3 × 10?19, <4 × 10?19, and <4 × 10?19 cm3 molecule?1 s?1 were obtained for naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. For the OH radical reactions, rate constants of (in units of 10?11 cm3 molecule?1 s?1) 2.59 ± 0.24, 5.23 ± 0.42, and 7.68 ± 0.48 were determined for naphthalene, 2±methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. These data show that under atmospheric conditions these naphthalenes will react mainly with the OH radical, with life-times due to this reaction ranging from ca. 11 h for naphthalene to ca. 4 h for 2,3-dimethylnaphthalene.  相似文献   

19.
Rate constants for the gas phase reactions of hydroxyl radicals and chlorine atoms with a number of ethers have been determined at 300 ± 3 K and at a total pressure of 1 atmosphere. Both OH radical and chlorine atom rate constants were determined using a relative rate technique. Values for the rate constants obtained are as follows.
compound kOH×1012(cm3 molecule?1 s?1) kC1×1011(cm3 molecule?1 s?1)
Hexane 5.53 ± 1.55
2-Chloro ethyl methyl ether 4.92 ± 1.09 14.4 ± 5.0
2,2-Dichloro ethyl methyl ether 2.37 ± 0.50 4.4 ± 1.6
2-Bromo ethyl methyl ether 6.94 ± 1.38 16.3 ± 5.4
2-Chloro,1,1,1-trifluoro ethyl ethyl ether <0.3 0.30 ± 0.10
Isoflurane <0.3 <0.1
Enflurane <0.3 <0.1
Di-i-propyl ether 11.08 ± 2.26 16.3 ± 5.4
Diethyl ether 25.8 ± 4.4
The above relative rate constants are based on the values of k(OH + pentane)=[3.94 ± 0.98]×10?12 and k(OH + diethyl ether)=[13.6 ± 2.26] × 10?12 cm3 molecule?1 s?1 in the case of the hydroxyl reactions. In the case of the chlorine atom reactions, the above rate constants are based on values of k(Cl + ethane)=[5.84 ± 0.88] × 10?11 and k(Cl + diethyl ether)=[25.4 ± 8.05] × 10?11 cm3 molecule?1 s?1. The quoted errors include ±2σ from a least squares analysis of our slopes plus the uncertainty associated with the reference rate constants. Atmospheric lifetimes calculated with respect to reaction with OH radicals are based on a tropospheric OH radical concentration of (7.7 ± 1.4) × 105 radicals cm?3, and lifetimes with respect to reaction with Cl atoms are based on a tropospheric Cl atom concentration of 1 × 103 atoms cm?3. Observed trends in the relative rates of reaction of hydroxyl radicals and chlorine atoms with the ethers studied is discussed. The significance of the calculated tropospheric lifetimes is also reviewed. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Relative rate constants for the gas-phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 ± 2 K using methyl nitrite photolysis in air as a source of OH radicals. Using a rate constant for the reaction of OH radicals with isoprene of 9.60 × 10?11 cm3 molecule?1 s?1, the rate constants obtained were (X 1011 cm3 molecule?1 s?1): cyclopentene 6.39 ± 0.23, cyclohexene 6.43 ± 0.17, cycloheptene 7.08 ± 0.22, 1,3-cyclohexadiene 15.6 ± 0.5, 1,4 cyclohexadiene 9.48 ± 0.39, bicyclo[2.2.1]-2-heptene 4.68 ± 0.39, bicyclo[2.2.1] 2,5 heptadiene 11.4 ± 1.0, and bicyclo[2.2.2] 2 octene 3.88 ± 0.19. These data show that the rate constants for the nonconjugated cycloalkenes studied depend on the number of double bonds and the degree of substitution per double bond, and indicate that there are no obvious effects of ring strain energy on these OH radical addition rate constants. A predictive technique for the estimation of OH radical rate constants for alkenes and cycloalkenes is presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号