首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Morphology of quenched poly(ethylene terephthalate) (PET) films crystallized by low-molecular-weight organic penetrants is studied by scanning electron microscopy. Films with thicknesses from ca. 1 mil (0.0025 cm) to ca. 35 mil (0.1 cm) were exposed to methylene chloride (MeCl2) and N,N-dimethylformamide (DMF) in the temperature ranges 0–38°C and 22–70°C, respectively. The effects on the surface and internal structures of contact with liquids and saturated vapors were examined. Severe porosity at the surface results from contact with the liquids, but only minor surface roughness appears following contact with vapors. Internal porosity developed in the thinnest films (ca. 1 mil) during crystallization in liquid environments. Here, the internal void fraction is greatest along the film centerline and decreases with increasing crystallization temperature. A mathematical model discussed previously accounts for the observed behavior.  相似文献   

2.
Polychloro-p-xylylene (Parylene C) and poly-p-xylylene (Parylene N) films were synthesized in vacuum with and without the presence of 42 mtorr of argon at various deposition temperatures and three different dimer sublimation rates. Depending on the synthesis conditions, the morphology of the films can vary from a homogeneous (nonporous) structure to a heterogeneous (porous) structure. The transport coefficients of the gases He, O2, N2, and CO2 through these films were measured at 25°C. The transport coefficients for both types of films vary with the deposition temperature and the dimer sublimation rate. The variation, however, cannot be solely explained by the change of crystallinity. Anomalous transport behavior is observed in the homogeneous, as-synthesized polymers of relatively high crystalline content (above 20–30%). In many cases the permeabilities and diffusivities increase despite an increase in crystallinity. The effects of crystallization induced by isothermal and solvent annealing on the transport coefficients of polymers of Parylene C are different from those of Parylene N synthesized with or without argon. The mean pore size and effective porosity of the porous films were calculated from gas permeation data. For Parylene C and Parylene N porous films synthesized without argon, increasing the dimer sublimation rate or decreasing the deposition temperature increases the mean pore size but decreases the effective porosity. For Parylene N porous films synthesized in the presence of argon, increasing the dimer sublimation rate or decreasing the deposition temperature results in a decrease in the mean pore size but an increase in the effective porosity. Overall, no appreciable change in transport coefficients is observed upon addition of an inert gas.  相似文献   

3.
Zusammenfassung Die Ermittlung der Abbaustufen von Seltenerdchlorid-Tetrahydrofuran-(THF)-Verbindungen durch isothermen kinetischen Abbau bestätigte die früher auf Grund der Zusammensetzung und Löslichkeit inTHF getroffene Gruppeneinteilung. Die Verbindungen der Zusammensetzung MeCl3·2THF ergaben eine Zwischenstufe MeCl3·0,5THF, die der Formel MeCl3·3,3–3,6THF je eine Phase MeCl3·THF und MeCl3·0,5THF. Abweichend verhielten sich die Addukte von La, Ce und Yb. Die Dampfdruckwerte von PrCl3·2THF und NdCl3·2THF wurden bei verschiedenen Temperaturen gemessen und daraus die jeweilige Zersetzungsenthalpie bestimmt. Durch direktes Erhitzen im Hochvakuum konnte dasTHF aus allen Verbindungen (außer der des Yb) völlig entfernt werden.
The isothermally determined degradation steps of the compounds of the chlorides of the rare earths with tetrahydrofurane (THF) correspond with the grouping which had already been found following their composition and solubilities inTHF. The compounds of the composition MeCl3·2THF gave an intermediate MeCl3·0,5THF, the compounds MeCl3·3.3–3.6THF formed the intermediate phases MeCl3·THF and MeCl3·0.5THF. The adducts of La, Ce and Yb did not correspond to this generalisation. The vapor pressures above PrCl3·2THF and NdCl3·2THF were determined at different temperatures, and the corresponding enthalpies of decomposition were calculated. Heating in a high vacuum completely removes allTHF except from the Yb compounds.


Mit 1 Abbildung

Frau Prof. Dr.E. Cremer zum Geburtstag gewidmet.  相似文献   

4.
Performance degradation under environmental conditions currently limits the practical utility of perovskite-based solar cells. The moisture stability of CH3NH3PbI3 perovskite films and solar cells was measured during exposure to three different levels of relative humidity. The films were crystallized at two different temperatures with and without simultaneous exposure to supercritical carbon dioxide. The film crystallinity, optical absorption, and device photoconversion efficiency was measured over time for three relative humidity levels and both crystallization methods. It was determined that film crystallization in supercritical CO2 resulted in significant improvement in moisture stability for films processed at 50 °C, but negligible improvement in stability for films processed at 100 °C.  相似文献   

5.
The solubilities and densities of the solutions in the ternary system LiCl–NaCl–H2O at 308 and 348 K were determined by the method of isothermal dissolution equilibrium. There are one invariant point, two univariant isotherm dissolution curves, and two crystallization regions corresponding to monohydrate (LiCl · H2O) and NaCl, respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagram for the ternary system at 273–348 K shows that the area of crystallization region of LiCl · H2O is decreased with the increasing of temperature, while that of NaCl is increased obviously. The solution density of the ternary system at two temperatures changes regularly with the increasing of LiCl concentration.  相似文献   

6.
Crystallization Behavior of SiO2-TiO2 Sol-Gel Thin Films   总被引:1,自引:0,他引:1  
The aim of this work was to investigate the crystallization behavior of thin films of SiO2−TiO2 made by the sol-gel process as function of the TiO2 content and the temperature and time of heat treatment. Precursor solutions were prepared by hydrolysis of TEOS (tetraethoxysilane) and TPOT (titaniums tetraisopropoxide). Multilayer films were spun on single crystal silicon wafers. The compositions studied were (on a molar percentage basis) 20TiO2−80SiO2, 30TiO2−70SiO2, 40TiO2−60SiO2 and pure TiO2. The films were heat treated at different temperatures between 300°C and 1200°C, for different periods of time (30 s-90 h). The crystallization kinetics were followed by micro-Raman spectrometry. Grazing incidence X-ray diffraction showed that the films crystallized into one or both of two crystalline phase of TiO2: anatase and rutile (for pure TiO2 only). The volume fractions of the crystalline phase varied from very low values (<1%), up to 100%, for a TiO2 sample heat treated at 800°C for 8 hours. The results show that the volume fraction of crystalline phase is strongly influenced by the heat treatment temperature and also, to a smaller extent, by the heat treatment time. The most important parameter, however, is the composition of the films: the higher their TiO2 concentration, the lower is the crystallization temperature and the larger is the crystallized fraction.  相似文献   

7.
The 0.2Bi(Zn1/2Ti1/2)O3–0.8PbTiO3 (0.2BZT–0.8PT) ferroelectric thin film was successfully fabricated on Pt(111)/Ti/SiO2/Si substrates by a sol–gel method. The result indicates that the film exhibits the (100) preferred orientation and has a relatively dense and uniform microstructure with a thickness of ~230 nm. The formation mechanism of the oriented films was ascribed to the growth of the (100) oriented PbO layer at ~450 °C during a layer-by-layer crystallization process. Temperature-dependent electrical properties of the 0.2BZT–0.8PT films were investigated, showing that the film has a potential for high temperature applications.  相似文献   

8.
The morphology of poly(butylene terephthalate) (PBT) crystallized from the melt at various temperatures was studied by small-angle light scattering, polarizing microscopy, and wide-angle x-ray diffraction. Spherulites with a maltese cross at 45° to the polars formed at lower temperatures while spherulites having an apparently higher melting point with a maltese cross along the polars (0°–90°) formed at higher temperatures. The spherulite size and crystallinity increased with increasing crystallization temperature. The Hv scattering patterns arising from the spherulites formed at lower temperature showed intensity maxima at azimuthal angles of 0° and 90°, while those obtained at higher temperatures showed the more common 45° intensity maxima. Microtomed samples from molded PBT bars showed spherulites with a 45° maltese cross which changed to a 0°–90° maltese cross upon heating just prior to melting. The skin-core effect due to varying thermal histories in these molded bars was clearly observed. Solvent crystallized films contained positive 0°–90° spherulites. Some changes occurring upon uniaxial stretching of PBT films are also discussed.  相似文献   

9.
Summary.  Orthovanadate (M 3+VO4; M = Fe, In) and vanadate (Fe2V4O13) thin films were prepared using sol-gel synthesis and dip coating deposition. Using analytical electron microscopy (AEM), the chemical composition and the degree of crystallization of the phases present in the thin Fe–V–O films were investigated. TEM samples were prepared in both orientations: parallel (plan view) and perpendicular (cross section) to the substrate. In the first stages of crystallization, when the particle sizes were in the nanometer range, the classical identification of phases using electron diffraction was not possible. Instead of measuring d values, experimentally selected area electron diffraction (SAED) patterns were compared to calculated (simulated) patterns in order to determine the phase composition. The problems of evaluating the ratio of amorphous and crystalline phases in thin films are reported. Results of TEM and XRD as well as IR and Raman spectroscopy showed that the films made at lower temperatures (300°C) consisted of nanograins embedded in the dominating amorphous phase. Characteristic vibrational spectra allowed to distinguish between the different crystalline phases, since the IR and Raman bands showed broadening due to the decreasing particle size of the films thermally treated at lower temperatures. Vibrational analysis also showed that the electrochemical cycling of crystalline films led to spectra that were in close agreement with the spectra of the nanocrystalline films prepared at lower temperatures. The formation of a nanocrystalline structure is therefore a prerequisite for obtaining a higher charging/discharging stability of Fe–V–O and In–V–O films. Received October 4, 2001. Accepted (revised) November 23, 2001  相似文献   

10.
The effects of solvent type and concentration of C60 on the crystallization of poly(L ‐lactide) (PLLA) during solvent evaporation, heating from room temperature, and cooling from the melt were investigated by polarized optical microscopy and differential scanning calorimetry. The addition of C60 enhanced the PLLA crystallization during solvent evaporation, during heating of the melt‐quenched films, and during cooling from the melt of As‐cast films, except for heating and cooling of the PLLA film with 1 wt % of C60 prepared with dichloromethane. In the case of solvent evaporation, the difference in crystallinity between the PLLA films with and without C60 became higher for the solvent with a lower boiling point. In the case of heating of melt‐quenched films, the addition of C60 had a small effect on the crystallinity of PLLA, whereas significantly lowered the peak top and ending temperatures of cold crystallization, except for melt‐quenched PLLA film with 1 wt % of C60 prepared with dichloromethane. The crystallinity of PLLA was determined by the solvent type, rather than by the C60 concentration. In the case of cooling from the melt of As‐cast films, the addition of C60 elevated the crystallinity and cold crystallization temperature values of PLLA films, except for PLLA films prepared with dichloromethane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2167–2176, 2007  相似文献   

11.
A new method of synthesis of TiO2 nanoparticles as well as preparation of the organic–inorganic hybrid nanocomposite films of (hydroxypropyl)cellulose (HPC)/TiO2 is presented. At the first stage, the oxotitanium hydrogel phase was obtained by the mineralization of (tetra‐isopropyl)orthotitanate (TIPT) modified by the methacrylic acid (MAA) in 15 wt% solution of H2O2 at room temperature and subsequent annealing at the temperature of 85°C. The crystallization of the nanoparticles of TiO2 was conducted at the oxotitanium hydrogel phase at temperatures around 120°C in the closed vessel. Nanocomposite hybrid films were prepared by the casting method from a solution of HPC and TiO2 nanoparticles in the water. The films of nanocomposite with 10 µm thickness are transparent to visible light and have a lower glass transition temperature compared with HPC in the bulk. This shift of the glass transition is interpreted in terms of packing density of HPC in the interface of HPC nanocomposite with TiO2. The X‐ray diffraction pattern of the nanocomposite film suggests a lower amount of mesomorphic phase of HPC in the composite compared with HPC in the bulk. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
《Comptes Rendus Chimie》2014,17(12):1176-1183
This work is a study of Hg2+-doped TiO2 thin films deposited on silicon substrates prepared by sol–gel method and treated at temperatures ranging between 600 to 1000 °C for 2 h. The structural and optical properties of thin films have been studied using different techniques. We analyzed the vibrations of the chemical bands by Fourier transform infrared (FTIR) spectroscopy and the optical properties by UV–Visible spectrophotometry (reflection mode) and photoluminescence (PL). The X-ray diffraction and Raman spectra of TiO2 thin films confirmed the crystallization of the structure under the form of anatase, rutile, mercury titanate (HgTiO3) as a function of the annealing temperature. The observation by scanning electron microscopy (SEM) showed the changing morphology, with respect to nanostructures, nanosheets, nanotubes, with the annealing temperature. The diameters of nanotubes ranged from 50 nm to 400 nm. The photoluminescence and reflectance spectra indicated that these structures should enhance photocatalytic activity.  相似文献   

13.
《Solid State Sciences》2012,14(6):661-667
The crystallization process, microstructure and dielectric properties of [(1 − x)PbO–xBaO]–Na2O–Nb2O5–SiO2 (PBNNS) (0 ≤ x ≤ 1) glass-ceramics prepared by controlled crystallization were investigated. The crystallization strategies for acquiring nano-crystallized PBNNS glass-ceramics were monitored by differential thermal analysis (DTA). X-ray diffraction (XRD) analysis revealed a major crystal phase transition in PBNNS glass matrix as the crystallization temperature increased. At low temperatures (700–750 °C), the major crystal phases precipitating in the glass matrix are identified as Pb2Nb2O7 for x = 0, Ba2NaNb5O15 for x = 1 and their solid solution for 0.2 ≤ x ≤ 0.8; while at higher temperatures (≥850 °C), heat treatment produces different crystalline phases, PbNb2O6 and NaNbO3 for x = 0, Ba2NaNb5O15 and NaNbO3 for x = 1, and the solid solution of these three phases for 0.2 ≤ x ≤ 0.8. Corresponding to the result of phase transition, microstructural observation proves increasing crystallite sizes with increasing temperature of heat treatment. At different crystallization temperatures, the dielectric properties of the [(1 − x)PbO–xBaO]–Na2O–Nb2O5–SiO2 glass-ceramics show a strong dependence on the chemical composition x. At low temperatures (700–750 °C), a maximum of the dielectric constant of the PBNNS glass-ceramic is found for the composition x = 0.6; while at higher crystallization temperatures (≥850 °C), the dielectric constants of all samples (0 ≤ x ≤ 1) exhibit decreasing values with increasing x.  相似文献   

14.
The crystallization process of some glasses in the ternary Na2O–SiO2–PbO system with good chemical stability that can be used for waste inertization was studied using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and scanning electron microscopy. The parent glasses were characterized by XRD and FT-IR, and their vitreous state was determined. DTA measurements evidenced glass transition (T g) and crystallization temperatures (T c). The thermal treatments were conducted at vitreous transition temperature (400 °C) and at highest effect of crystallization (650 °C). XRD evidenced the lead and sodium silicate crystalline phases in samples treated at 650 °C for 12 h. Micrometer crystallites dispersed in the glass matrices have affected the transparence of glasses and made them opaque after treatment at 650 °C. The influence of oxide quantities in compositions on the crystallization tendency was revealed. A PbO higher content than that of SiO2 as well as lower Na2O content decreased the tendency of crystallization.  相似文献   

15.
Zusammenfassung Die wasserfreien Chloride der Seltenerdmetalle geben mit Tetrahydrofuran (THF) stabile, kristalline Verbindungen, von denen folgende hergestellt wurden: MeCl3·1,4–1,5THF (Me=La, Ce), MeCl3·2THF (Me=Pr, Nd, Sm, Gd), MeCl3·3,3–3,6THF (Me=Dy, Ho, Er, Y) und YbCl3·2,9THF. Die Löslichkeiten inTHF wurden bestimmt; sie liegen entsprechend den unterschiedlichen Bodenkörpertypen auf verschiedenen Kurvenzügen.
The anhydrous chlorides of the rare earth elements form stable crystalline compounds with tetrahydrofurane (THF). The following compounds were prepared: MeCl3·1,4–1,5THF (Me=La, Ce), MeCl3·2THF (Me=Pr, Nd, Sm, Gd), MeCl3·3,3–3,6THF (Me=Dy, Ho, Er, Y) and YbCl3·2,9THF. Their solubilities inTHF were determined. Two different curves are obtained, corresponding to different compositions of the solid phases in equilibrium with the solutions.


Mit 1 Abbildung  相似文献   

16.
Multilayered nanostructured TiO2 thin films were prepared by sol–gel and dipping deposition on quartz substrate followed by thermal treatment under reducing atmosphere (20 %H2–80 %Ar). Heat treatment at progressively higher temperatures caused structural, morphological, and optical changes, which were investigated by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, and UV–Vis spectroscopy. The conductivities of the thin films were also measured by 4-point probe method. The XRD results showed that the calcined TiO2 thin films consist of single anatase phase which was completely transformed into rutile phase after heat treatment at 1,000 °C. The grains of films grew by intra-agglomerate densification after heat treatment at higher temperatures. The root mean square roughness of the samples was found to be in the range of 0.58–3.36 nm. The partially reduced TiO2 samples have red-shifted transmittance bands due to new energy band formed by oxygen vacancies. The electrical conductivity of the films was also enhanced after heat treatment in reducing atmosphere.  相似文献   

17.
The non-isothermal method for estimating the kinetic parameters of crystallization for the phase change memory (PCM) materials was discussed. This method was applied to the perspective PCM material of Ge2Sb2Te5 with different Bi contents (0, 0.5, 1, 3 mass%) for defining the kinetic triplet. Rutherford backscattering spectroscopy and X-ray diffraction were used to carry out elemental and phase analysis of the deposited films. Differential scanning calorimetry at eight different heating rates was used to investigate kinetics of thermally induced transformations in materials. Dependences of activation energies of crystallization (E a) on the degree of conversion were estimated by model-free Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, Tang and Starink methods. The obtained values of E a were quite close for all of these methods. The reaction models of the phase transitions were derived with using of the model-fitting Coats–Redfern method. In order to find pre-exponential factor A at progressive conversion values, we used values of E a already estimated by the model-free isoconversional method. It was established that the crystallization processes in thin films investigated are most likely describes by the second and third-order reactions models. Obtained kinetic triplet allowed predicting transition and storage times of the PCM cells. It was found that thin films of Ge2Sb2Te5 + 0.5 mass% Bi composition can provide the switching time of the phase change memory cell less than 1 ns. At the same time, at room temperature this material has a maximum storage time among the studied compositions.  相似文献   

18.
The vanadium pentoxide (V2O5) films were deposited on silicon wafer by DC magnetron sputtering. By Raman scattering measurements, the microstructure properties of the V2O5 films prepared with different O2–Ar gas flow ratios and annealed at different temperatures were studied, respectively. The results revealed that the increase of O2–Ar gas flow ratio during sputtering was of advantage to prepare the V2O5 film with desired layer structure. A high post-annealing temperature (below 500 °C) induced the crystallization and the formation of the integrated structure of V2O5 film. However, it was found that both intensities of Raman scattering peaks at 146 cm?1 and 994 cm?1, respectively, decreased for samples annealed at a temperature of 550 °C. The peak at 146 cm?1 was attributed to skeleton bent vibration and that at 994 cm?1 was due to the stretching vibration of vanadyl V=OA bond. It showed that the high-temperature annealing was believed to have distorted the microstructure of V2O5 films. The oxygen vacancies were, therefore, induced, which benefited the formation of V-OA-V bonds between layers. The result of X-ray diffraction measurements was in good agreement with that of Raman scattering spectra.  相似文献   

19.
The processes taking place on air-heating of SiO2−Ag+ films and xerogels produced from the SiO2 sols of different pH (3.7 or 9.5) were investigated. Silver nanoparticles 10–40 nm in size tolerant to oxidation at temperatures above 600 °C were found to be formed in the systems whatever the pH value of the starting sol. SiO2 crystallization giving the cristobalite phase in the temperature range from 500 to 800 °C was shown to proceed only in the films produced from the acidic sol, while in those formed from the alkali one SiO2 remained amorphous. A mechanism by which the formation of Ag nanoparticles and the cristobalite phase occurs in the films at the oxidative conditions is suggested.  相似文献   

20.
Vibrational and optical properties of MoO3 thin films have been studied by Raman and infrared spectroscopy. The films were deposited onto Si substrates at a temperature of 150 °C by chemical vapor deposition of Mo(CO)6 at atmospheric pressure and different amounts of oxygen in the reactor. The Raman and IR spectral analyses show that the as-deposited films are in general amorphous. Post-deposition annealing at 300 and 400 °C leads to crystallization and the MoO3 film structure is a mixture of orthorhombic and monoclinic MoO3 modifications. Transformation of the monoclinic crystallographic modification to a thoroughly orthorhombic layered structure is observed for films heated at temperatures above 400 °C. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号