首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the aquation of (H2O)5Cr(O2CCCl3)2+ have been examined at 35–55°C and 1.00M ionic strength with [H+] = 0.01?1.00M. The reaction follows the rate equation -d ln [Crtotal]/dt = (a[H+]?1 + b + c[H+])/(1 + d[H+]), where [Crtotal] is the stoichiometric concentration of the complex. At 45°C a = (1.41 ± 0.03) × 10?7M/s, b = (1.66 ± 0.02) × 10?5 s?1, c = (7.0 ± 0.8) × 10?5M?1·S?1 and d = 2.3 ± 0.3M?1. Two mechanisms consistent with this rate law are discussed, with evidence being presented in favor of an ester hydrolysis mechanism involving steady-state intermediates. Equilibrium and activation parameters were determined.  相似文献   

2.
The kinetics of oxidation of triethanolamine (TEA) by diperiodatoargenate(III) anion, [Ag(HIO6)2]5?, has been studied in aqueous alkaline medium by conventional spectrophotometry. The reaction is pseudo-first-order in [Ag(III)] disappearance with kobs = (k1 + k2[OH?]) K1K2[TEA]/{[H2IO63?]e + K1 + K1K2[TEA]}, where k1 = 8.05 × 10?3 S?1, k2 = 0.46 M?1 S?1, K1 = 6.15 × 10?4 M, and K2 = 537 M?1 at 25°C, and μ = 0.30 M. Based on the inference that an inner-sphere complex is formed by indirect replacement of a ligand of [Ag(HIO6)2]5? by a TEA molecule, a reaction mechanism has been proposed. The complex undergoes redox by two modes, both internal and one hydroxide ion assisted.  相似文献   

3.
The kinetics of stripping of Ni2+ from a Ni‐BTMPPA complex, dissolved in a kerosene solution of BTMPPA (H2A2, Cyanex 272), by acidic sulfate‐acetato solution, was studied using the single (falling) drop technique and flux (F) method of data treatment. The empirical flux equation at 303 K is Fb (kmol/m2s) = 10?4.35 [Ni2+] (1+10?3.42 [H+]?1)?1 ([H2A2](o)0.5+2.50 [H2A2](o))?1 (1+6[SO42?]) (1+3.20 [Ac?]). Activation energy (Ea), entropy change in activation (ΔS±), and enthalpy change in activation (ΔH±) were measured under different experimental conditions. Based on the empirical flux equation, Ea and ΔS±, the mechanism of Ni2+ stripping is provided. In a low [H+] region, the stripping reaction steps appear as [NiA+] → Ni2+ + A? and [Ni(HA2)2](int) → [NiHA2]+(int) + HA2(int)? in lower and higher concentration regions of free BTMPPA, respectively, provided [SO42?] and [Ac?] are kept low. However, at higher [H+] concentrations, the stripping is under diffusion control. With increasing [SO42?] and [Ac?], the enhancement of the rate is attributed to the attack of the Ni(II) complex by SO42? or HSO4? and Ac? to form NiSO4 or NiHSO4+ and NiAc+ complexes. Negative ΔS± values indicate that the rate‐determining stripping reaction steps occur via an substitution nucleophilic, bimolecular (SN2) mechanism.  相似文献   

4.
[CrIII(LD)(Urd)(H2O)4](NO3)2?·?3H2O (LD?=?Levodopa; Urd?=?uridine) was prepared and characterized. The product of the oxidation reaction was examined using HPLC. Kinetics of the oxidation of [CrIII(LD)(Urd)(H2O)4]2+ with N-bromosuccinimide (NBS) in an aqueous solution was studied spectrophotometrically, with 1.0–5.0?×?10?4?mol?dm?3 complex, 0.5–5.0?×?10?2?mol?dm?3 NBS, 0.2–0.3?mol?dm?3 ionic strength (I), and 30–50°C. The reaction is first order with respect to [CrIII] and [NBS], decreases as pH increases in the range 5.46–6.54 and increases with the addition of sodium dodecyl sulfate (SDS, 0.0–1.0?×?10?3?mol?dm?3). Activation parameters including enthalpy, ΔH*, and entropy, ΔS*, were calculated. The experimental rate law is consistent with a mechanism in which the protonated species is more reactive than its conjugate base. It is assumed that the two-step one-electron transfer takes place via an inner-sphere mechanism. A mechanism for this reaction is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* for some CrIII complexes. Formation of [CrIII(LD)(Urd)(H2O)4]2+ in vivo probably occurs with patients who administer the anti-Parkinson drug (Levodopa), since CrIII is a natural food element. This work provides an opportunity to identify the nature of such interactions in vivo similar to that in vitro.  相似文献   

5.
In aqueous solution N, N′-bis-(4-(5)-imidazolylmethyl)-ethylenediamine-cobalt (II) (CoIMEN2+) takes up molecular oxygen giving μ-dioxygen-μ-hydroxo-bis-[N, N′-bis-(4-(5)-imidazolylmethyl)-ethylenediamine]-dicobalt (II). (Co IMEN)2 O2 (OH)3+ is exceptionally stable against irreversible autoxydation to CoIII species. Its absorption spectrum is very similar to that of the known analogous complex (CoTRIEN)2 O2 (OH)3+. The kinetics of formation and dissociation of (CoIMEN)2O2(OH)3+ are studied by spectrophotometry and with an oxygen specific electrode. The rate of the forward reaction is described by vf = [CoIMEN2+]2 · [O2] · (k1 + k2 · [OH?]) with k1 = 9 · 104 M?2 s?1 and k2 = 1 · 1012M?3 S?1, at 25° and I = 0,2. A mechanism including hydroxylated as well as nonhydroxylated intermediates is proposed. Dissociation is preceeded by protonation of the oxygen adduct. At pH 1–2 the rate of dissociation is independent of [H+] and follows first order kinetics: vD = k3 · [(CoIMEN)2O2(OH)3+] with k3 = 2.15 · 10?2 S?1.  相似文献   

6.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

7.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

8.
The kinetics of oxidation of Fe2+ by [Co(C3H2O4)3]3? in acidic solutions at 605 nm showed a simple first-order dependence in each reactant concentration. The second-order rate constant dependence on [H+] is in accordance with eqn (i) k2 = k′2 + k3[H+] (i) where k′2 and k3 have values of 73.4 ± 14.0 M ?1 s?1 and 353 ± 41 M?2 s?1, respectively, at 1.0 M ionic strength (NaClO4) and 25°C. At 310 nm the formation and decomposition of an intermediate, believed to be [FeC3H2O4]+, was observed. The increase in the rate of oxidation with increasing [H+] was interpreted in terms of a “one-ended” dissociation mechanism which facilitates chelation of Fe2+ by the carbonyl oxygens of malonate in the transition state.  相似文献   

9.
The kinetics of the oxidation of thiosulphate ions by octacyanotungstate(V) ions has been studied in the pH range 3.9–5.0. The reaction showed zero-order kinetics with respect to [W(CN)83?] and is consistent with the rate law R = k[H+][S2O32?]2. A reaction mechanism is proposed for the reaction with a third-order rate constant of 0.26 M?2 s?1 at 25°C.  相似文献   

10.
The kinetics and mechanism of the reduction of the μ-adi-di[N,N′-bis{salicylideneethylenediaminatoiron(III)}] complex, [Fe2adi], by dithionate ion, S2O6 2?, have been investigated in aqueous perchloric acid at 29 °C, I = 0.05 mol dm?3 (NaClO4) and [H+] = 5.0 × 10?3 mol dm?3. Spectrophotometric titrations indicated that one mole of the reductant was oxidized per mole of oxidant. Kinetic profiles indicated first-order rate with respect to [Fe2adi] but zeroth-order dependence on [S2O6 2?]. The rate of reaction increased with increase in [H+], decreased with increased dielectric constant, but was invariant to changes in ionic strength of the medium. Addition of small amounts of AcO? and Mg2+ ions did not catalyse the reaction. A least-squares fit of rate against [H+]2 was linear (r 2 = 0.984) without intercept. The reaction was analysed on the basis of a proton-coupled outer-sphere electron transfer mechanism.  相似文献   

11.
The kinetics of decomposition of [Alg · Mn VIO42?] intermediate complex have been investigated spectrophotometrically at a constant ionic strength of 0.5 mol dm?3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ΔS? = ?103.88±6.18 J mol?1 K?1, ΔH? = 51.61 ± 1.02 kJ mol?1, and ΔG? = 82.57 ± 2.86 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The rate of oxygen exchange between trans-[Re(py)4O2]+ and solvent water in pypyH+ buffer solution follows simple first-order kinetics and both oxygens are equivalent. The half-life for isotopic oxygen exchange is about 12 h at a pH of 5.0, 25°C, and [py] = 0.10 M. The observed rate constant for exchange increases with acidity, in the pH range 4 to 6, decreases with [py], and is nearly independent of ionic strength. A small but significant increase of kobs occurs with increasing complex concentration. The rate of exchange follows the rate equation kobs/2 = k0 + k1/[py] with k0 = 1.4 × 10?5(2) s?1 and k1 = 4.7 × 10?7(1) M, s?1 at 25°C. The activation parameters for the reaction at pH = 7.15 (predominately the k0 term) are: ΔH* = +137.(1) kJ/M and ΔS* = +126.(1) J/MK. The pH effect and complex concentration effect are discussed in mechanistic terms. These results are compared to those found for [Re(en)2O2]+ and [Re(CN)4O2]3?.  相似文献   

14.
Low-energy reactive collisions between the negative molecular ion of a tetrachlorodibenzo-p-dioxin (TCDD) and oxygen inside the collision cell of a triple-stage quadrupole mass spectrometer produce a substitution ion [M ? Cl + O]?, a phenoxide ion [C6H4-nO2Cln], [M ? HCl], and Cl? by which 1,2,3,4-, 1,2,3,6/1,2,3,7- and 2,3,7,8-TCDD isomers can be distinguished either directly or on the basis of intensity ratios. The collision conditions have an important effect on the relative abundances. Energy- and pressure-resolved curves show that the ions formed by a collisionally activated reaction (CAR) process, i.e. [M ? Cl + O]? and [C6H4-n,O2Cln], are favoured by a high pressure of oxygen (3-6 mTorr) (1 Torr = 133.3 Pa) and a low collision energy (0.1-7 eV), whereas the ions formed by a collisionally activated dissociation (CAD) process, i.e. [M ? HCl] and Cl?, are favoured by high pressure and high energy. By choosing a relatively low collision energy (5 eV) and high pressure (4 mTorr), the CAR and CAD ions can be clearly detected.  相似文献   

15.
Aqueous dithionite decomposes at 20°C and pH values not far from 7.0 to give thiosulfate and sulfite from which trithionate may form. Addition of thiosulfate accelerates this reaction only at pH < 6. The pH dependence is explained by formation of HS2O3? ions which are reduced by dithionite to HS? and SO2?3. Sulfide destroys dithionite by nucleophilic cleavage, probably with formation of sulfoxylate and thiosulfite ions. The polythionates SnO2?6 (n = 3–5) are reduced by dithionite at pH = 7.0 and 20°C according to SnO2?6 + S2O2?4 + 2 H2O→S2O32? + Sn–3SO32? + 4H1 + 2SO32? The reaction rate rapidly increases with the number n of sulfur atoms. In secondary reactions sulfite attacks SnO62? ions with thiosulfate formation.  相似文献   

16.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   

17.
The kinetics of oxidation of the chromium(III) complexes, [Cr(Ino)(H2O)5]3+ and [Cr(Ino)(Gly)(H2O)3]2+ (Ino?=?Inosine and Gly?=?Glycine) involving a ligands of biological significance by N-bromosuccinimide (NBS) in aqueous solution to chromium(VI) have been studied spectrophotometrically over the 25–45°C range. The reaction is first order with respect to both [NBS] and [Cr], and increases with pH over the 6.64–7.73 range in both cases. The experimental rate law is consistent with a mechanism in which the hydroxy complexes [Cr(Ino)(H2O)4(OH)]2+ and [Cr(Ino)(Gly)(H2O)2(OH)]+ are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant, k 1, for the oxidation of the [Cr(Ino)(H2O)5]3+ (6.90?×?10?4?s?1) is lower than the value of k 2 (9.66?×?10?2?s?1) for the oxidation of [Cr(Ino)(Gly)(H2O)2]2+ at 35°C and I?=?0.2?mol?dm?3. The activation parameters have been calculated. Electron transfer apparently takes place via an inner-sphere mechanism.  相似文献   

18.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

19.
The equilibrium constant for the reaction CH2(COOH)2 + I3? ? CHI(COOH)2 + 2I? + H+, measured spectrophotometrically at 25°C and ionic strength 1.00M (NaClO4), is (2.79 ± 0.48) × 10?4M2. Stopped-flow kinetic measurements at 25°C and ionic strength 1.00M with [H+] = (2.09-95.0) × 10?3M and [I?] = (1.23-26.1) × 10?3M indicate that the rate of the forward reaction is given by (k1[I2] + k3[I3?]) [HOOCCH2COO?] + (k2[I2] + k4[I3?]) [CH(COOH)2] + k5[H+] [I3?] [CH2(COOH)2]. The values of the rate constants k1-k5 are (1.21 ± 0.31) × 102, (2.41 ± 0.15) × 101, (1.16 ± 0.33) × 101, (8.7 ± 4.5) × 10?1M?1·sec?1, and (3.20 ± 0.56) × 101M?2·sec?1, respectively. The rate of enolization of malonic acid, measured by the bromine scavenging technique, is given by ken[CH2(COOH)2], with ken = 2.0 × 10?3 + 1.0 × 10?2 [CH2(COOH)2]. An intramolecular mechanism, featuring a six-member cyclic transition state, is postulated to account for the results on the enolization of malonic acid. The reactions of the enol, enolate ion, and protonated enol with iodine and/or triodide ion are proposed to account for the various rate terms.  相似文献   

20.
[Ni(hmp)(MeOH)Br]4 ? 2H2O has been prepared by the reaction of 2-hydroxymethylpyridine with NiBr2 ? 3H2O and characterized by IR, elemental analysis, powder X-ray diffraction, thermogravimetric analyses, magnetic measurements, and single crystal X-ray diffraction. The crystal structure shows two independent [Ni(hmp)(MeOH)Br]4 molecules in the asymmetric unit and [Ni4O4]4+ cubane-type cores. Each octahedral Ni(II) is bridged by four μ3-CH2O ? fragments from four hmp ? ligands. Magnetic studies show that ferromagnetic coupling gives an S = 4 ground state with significant magnetoanisotropy, and the parameters are J 1 = 8.56, J 2 = 2.28, D = ?0.65 cm?1, and g ≈ 2.13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号