首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We consider the problem of computing with faulty components in the context of the Boolean decision tree model, in which cost is measured by the number of input bits queried, and the responses to queries are faulty with a fixed probability. We show that if f can be represented in k-DNF form and in j-CNF form, then O(n log(min(k, j)/q)) queries suffice to compute f with error probability less than q, where n is the number of input bits. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
We study resilient functions and exposure‐resilient functions in the low‐entropy regime. A resilient function (a.k.a. deterministic extractor for oblivious bit‐fixing sources) maps any distribution on n ‐bit strings in which k bits are uniformly random and the rest are fixed into an output distribution that is close to uniform. With exposure‐resilient functions, all the input bits are random, but we ask that the output be close to uniform conditioned on any subset of nk input bits. In this paper, we focus on the case that k is sublogarithmic in n. We simplify and improve an explicit construction of resilient functions for k sublogarithmic in n due to Kamp and Zuckerman (SICOMP 2006), achieving error exponentially small in k rather than polynomially small in k. Our main result is that when k is sublogarithmic in n, the short output length of this construction (O(log k) output bits) is optimal for extractors computable by a large class of space‐bounded streaming algorithms. Next, we show that a random function is a resilient function with high probability if and only if k is superlogarithmic in n, suggesting that our main result may apply more generally. In contrast, we show that a random function is a static (resp. adaptive) exposure‐resilient function with high probability even if k is as small as a constant (resp. loglog n). No explicit exposure‐resilient functions achieving these parameters are known. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

3.
We consider the “weighted” operator Pk=????x a(x)? x on the real line with a step-like coefficient which appears when propagation of waves through a finite slab of a periodic medium is studied. The medium is transparent at certain resonant frequencies which are related to the complex resonance spectrum of Pk. If the coefficient is periodic on a finite interval (locally periodic) with k identical cells, then the resonance spectrum of Pk has band structure. In the article, we study a transition to semi-infinite medium by taking the limit k→?∞?. The bands of resonances in the complex lower half plane are localized below the band spectrum of the corresponding periodic problem (k=∞) with k???1 or k resonances in each band. We prove that as k→?∞?, the resonance spectrum converges to the real axis.  相似文献   

4.
Cryan and Miltersen (Proceedings of the 26th Mathematical Foundations of Computer Science, 2001, pp. 272–284) recently considered the question of whether there can be a pseudorandom generator in NC0, that is, a pseudorandom generator that maps n‐bit strings to m‐bit strings such that every bit of the output depends on a constant number k of bits of the seed. They show that for k = 3, if m ≥ 4n + 1, there is a distinguisher; in fact, they show that in this case it is possible to break the generator with a linear test, that is, there is a subset of bits of the output whose XOR has a noticeable bias. They leave the question open for k ≥ 4. In fact, they ask whether every NC0 generator can be broken by a statistical test that simply XORs some bits of the input. Equivalently, is it the case that no NC0 generator can sample an ε‐biased space with negligible ε? We give a generator for k = 5 that maps n bits into cn bits, so that every bit of the output depends on 5 bits of the seed, and the XOR of every subset of the bits of the output has bias 2. For large values of k, we construct generators that map n bits to bits such that every XOR of outputs has bias . We also present a polynomial‐time distinguisher for k = 4,m ≥ 24n having constant distinguishing probability. For large values of k we show that a linear distinguisher with a constant distinguishing probability exists once m ≥ Ω(2kn?k/2?). Finally, we consider a variant of the problem where each of the output bits is a degree k polynomial in the inputs. We show there exists a degree k = 2 pseudorandom generator for which the XOR of every subset of the outputs has bias 2?Ω(n) and which maps n bits to Ω(n2) bits. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

5.
We present three alternative simple constructions of small probability spaces on n bits for which any k bits are almost independent. The number of bits used to specify a point in the sample space is (2 + o(1)) (log log n + k/2 + log k + log 1/?), where ? is the statistical difference between the distribution induced on any k bit locations and the uniform distribution. This is asymptotically comparable to the construction recently presented by Naor and Naor (our size bound is better as long as ? < 1/(k log n)). An additional advantage of our constructions is their simplicity.  相似文献   

6.
We consider the decision problem for sets of sentences of first-order logic when instead of interpreting function symbols as total functions over the universe of a model (henceforth referred to as the usual interpretation) we interpret them as partial functions.We consider only standard classes, which are certain sets of prenex sentences specified by restrictions on the prefix and on the numbers ofk-place predicate and function symbols for eachk1. Standard classes are introduced in [1] and it is proved there that the decision problem for any set of prenex sentences specified by such restrictions reduces to that for the standard classes.We solve the decision problem completely for standard classes with at least one function symbol and both with and without equality.This problem was suggested to me by my supervisor, Professor Yuri Gurevich who was confident that the results would be very similar to those for the usual interpretation and could be achieved by similar techniques.  相似文献   

7.
linear array network consists of k+1 processors with links only between and (0≤i<k). It is required to compute some boolean function f(x,y) in this network, where initially x is stored at and y is stored at . Let be the (total) number of bits that must be exchanged to compute f in worst case. Clearly, , where D(f) is the standard two-party communication complexity of f. Tiwari proved that for almost all functions and conjectured that this is true for all functions. In this paper we disprove Tiwari's conjecture, by exhibiting an infinite family of functions for which is essentially at most . Our construction also leads to progress on another major problem in this area: It is easy to bound the two-party communication complexity of any function, given the least number of monochromatic rectangles in any partition of the input space. How tight are such bounds? We exhibit certain functions, for which the (two-party) communication complexity is twice as large as the best lower bound obtainable this way. Received: March 1, 1996  相似文献   

8.
Every k-interval Boolean function f can be represented by at most k intervals of integers such that vector x is a truepoint of f if and only if the integer represented by x belongs to one of these k (disjoint) intervals. Since the correspondence of Boolean vectors and integers depends on the order of bits an interval representation is also specified with respect to an order of variables of the represented function. Interval representation can be useful as an efficient representation for special classes of Boolean functions which can be represented by a small number of intervals. In this paper we study inclusion relations between the classes of threshold and k-interval Boolean functions. We show that positive 2-interval functions constitute a (proper) subclass of positive threshold functions and that such inclusion does not hold for any k>2. We also prove that threshold functions do not constitute a subclass of k-interval functions, for any k.  相似文献   

9.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). Folowing [7], we consider a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ε ∈ ℂ, is said to have a parametric center, if for any ɛ and for any solutiony(ɛ,x) of (**)y(ɛ, 0)≡y(ɛ, 1).. We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and generalize a “canonical representation” ofm k (x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

10.
LetA 1,,A n be distinctk-dimensional vectors. We consider the problem of partitioning these vectors intom sets so as to maximize an objective which is a quasi-convex function of the sum of vectors in each set. We show that there exists an optimal partition whose sets have (pairwise) disjoint conic hulls. We also show that if the number of vectors in each of the sets is constrained, then a weaker conclusion holds, namely, there exists an optimal partition whose sets have (pairwise) disjoint convex hulls. The results rely on deriving necessary and sufficient conditions for a point to be an extreme point of a corresponding polytope.Research of this author was partially supported by NSF Grant ECS-83-10213 and by a Grant for the Promotion of Research at the Technion.  相似文献   

11.
We consider a new method for constructing finite-dimensional irreducible representations of the reflection equation algebra. We construct a series of irreducible representations parameterized by Young diagrams. We calculate the spectra of central elements s k=Trq L k of the reflection equation algebra on q-symmetric and q-antisymmetric representations. We propose a rule for decomposing the tensor product of representations into irreducible representations.  相似文献   

12.
It has been shown by various researchers that designing a perfect hashing function for a fixed set ofn elements requires (n) bits in the worst case. A possible relaxation of this scheme is to partition the set into pages, and design a hash function which maps keys to page addresses, requiring subsequent binary search of the page. We have shown elsewhere that (nk/2 k+1)(1 +o(1)) bits are necessary and sufficient to describe such a hash function where the pages are of size 2 k . In this paper we examine the additional scheme of expanding the address space of the table, which does substantially improve the hash function complexity of perfect hashing, and show that in contrast, it does not reduce the hash function complexity of the paging scheme.Research supported by NSF Grant CCR-9017125 and by a grant from Texas Instruments.  相似文献   

13.
We consider two new classes of graphs arising from reliability considerations in network design. We want to construct graphs with a minimum number of edges which remain Hamiltonian after k edges (or k vertices) have been removed. A simple construction is presented for the case when k is even. We show that it is minimum k-edge Hamiltonian. On the other hand, Chartrand and Kapoor previously proved that this class of graphs was also minimum k-vertex Hamiltonian. The case when k is large (odd or even) is also considered. Some results about directed graphs are also presented.  相似文献   

14.
Summary In order to determine the roots of a polynomialp, a sequence of numbers {x k} is constructed such that the associated sequence {|p(x k)|} decreases monotonically. To determine a new iteration pointx k+1 such that |p(x k+1)|<-|p(x k)| ( is a positive real constant, <1, depending only on the degree ofp), we determine a circleK aroundx k which contains no root ofp and compute the values ofp atN points which are distributed equally on the circumference ofK (N again depends only on the degree ofp); at least one of theN points is shown to satisfy the given condition. Computing the function values by means of Fourier synthesis according to Cooley-Tukey [2] and combining our iteration step with the normal step of the method of Nickel [1], we obtain a numerically safe and fast algorithm for determining the roots of arbitrary polynomials.  相似文献   

15.
For given positive integersm ≥ 2,d 1 andd 2, we consider the equation of the title in positive integersx, y andk ≥ 2. We show that the equation implies thatk is bounded. For a fixedk, we give conditions under which the equation implies that max(x, y) is bounded. Dedicated to the memory of Professor K G Ramanathan  相似文献   

16.
We analyze in detail an almost optimal algorithm for generating an exponentially distributed variate. The algorithm is due to Knuth and Yao and relies on a method which goes back to J. von Neumann. It is shown here that it can generate k bits of an exponentially distributed variate using an average of about k + 5.67974692 coin flippings. This solves a problem left open by Knuth and Yao.  相似文献   

17.
The defocusing Davey-Stewartson II equation has been shown in numerical experiments to exhibit behavior in the semiclassical limit that qualitatively resembles that of its one-dimensional reduction, the defocusing nonlinear Schrödinger equation, namely the generation from smooth initial data of regular rapid oscillations occupying domains of space-time that become well-defined in the limit. As a first step to studying this problem analytically using the inverse scattering transform, we consider the direct spectral transform for the defocusing Davey-Stewartson II equation for smooth initial data in the semiclassical limit. The direct spectral transform involves a singularly perturbed elliptic Dirac system in two dimensions. We introduce a WKB-type method for this problem, proving that it makes sense formally for sufficiently large values of the spectral parameter k by controlling the solution of an associated nonlinear eikonal problem, and we give numerical evidence that the method is accurate for such k in the semiclassical limit. Producing this evidence requires both the numerical solution of the singularly perturbed Dirac system and the numerical solution of the eikonal problem. The former is carried out using a method previously developed by two of the authors, and we give in this paper a new method for the numerical solution of the eikonal problem valid for sufficiently large k. For a particular potential we are able to solve the eikonal problem in closed form for all k, a calculation that yields some insight into the failure of the WKB method for smaller values of k. Informed by numerical calculations of the direct spectral transform, we then begin a study of the singularly perturbed Dirac system for values of k so small that there is no global solution of the eikonal problem. We provide a rigorous semiclassical analysis of the solution for real radial potentials at k=0, which yields an asymptotic formula for the reflection coefficient at k=0 and suggests an annular structure for the solution that may be exploited when k ≠ 0 is small. The numerics also suggest that for some potentials the reflection coefficient converges pointwise as ɛ↓ 0 to a limiting function that is supported in the domain of k-values on which the eikonal problem does not have a global solution. It is expected that singularities of the eikonal function play a role similar to that of turning points in the one-dimensional theory. © 2019 Wiley Periodicals, Inc.  相似文献   

18.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). We introduce a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ℂ, is said to have a parametric center, if for any ε and for any solutiony(ε,x) of (**),y(ε,0)≡y(ε,1). We show that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and on this base prove in some special cases a composition conjecture, stated in [10], for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

19.
We study a generalization of the kernel of a polygon. A polygonP isk guardable if there arek points inP such that, for all pointsp inP, there is at least one of thek points that seesp. We call thek points ak-guard set ofP and thek-kernel of a polygonP is the union of allk-guard sets ofP. The usual definition of the kernel of a polygon is now the one-kernel in this notation.We show that the two-kernel of a simple polygonP withn edges has O(n4) components and that there are polygons whose two-kernel has (n) components. Moreover, we show that the components of the two-kernel of a simple polygon can be paired in a natural manner which implies that the two-kernel of a simple polygon has either one component or an even number of components. Finally, we consider the question of whether there is a non-star-shaped simple polygonP such that 2-kernel(P) = P. We show that when the two-kernel has only one component, it contains a hole; hence, the two-kernel of a simple polygonP is neverP itself. For everyk 1, there are, however, polygonsP k with holes such thatk-kernel(Pk) = Pk.This work was supported under grant No. Ot 64/8-1, Diskrete Probleme from the the Deutsche Forschungsgemeinschaft, grants from the Natural Sciences and Engineering Council of Canada, from the Information Technology Research Centre of Ontario, and from the Research Grants Council of Hong Kong.  相似文献   

20.
Dedicated to the Memory of Paul Erdős We generalize the multiparty communication model of Chandra, Furst, and Lipton (1983) to functions with b-bit output (b = 1 in the CFL model). We allow the players to receive up to b - 1 bits of information from an all-powerful benevolent Helper who can see all the input. Extending results of Babai, Nisan, and Szegedy (1992) to this model, we construct families of explicit functions for which bits of communication are required to find the "missing bit", where n is the length of each player's input and k is the number of players. As a consequence we settle the problem of separating the one-way vs. multiround communication complexities (in the CFL sense) for players, extending a result of Nisan and Wigderson (1991) who demonstrated this separation for k = 3 players. As a by-product we obtain lower bounds for the multiparty complexity (in the CFL sense) of new families of explicit boolean functions (not derivable from BNS). The proofs exploit the interplay between two concepts of multicolor discrepancy; discrete Fourier analysis is the basic tool. We also include an unpublished lower bound by A. Wigderson regarding the one-way complexity of the 3-party pointer jumping function. Received November 12, 1998 RID="*" ID="*" Supported in part by NSA grant MSPR-96G-184. RID="†" ID="†" Supported in part by an NSF Graduate Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号