首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4,4′‐hexafluoroisopropylidene‐2,2‐bis‐(phthalic acid anhydride) (1) was reacted with L ‐methionine (2) in acetic acid and the resulting N,N′–(4,4′‐hexafluoroisopropylidenediphthaloyl)‐bis‐L ‐methionine (4) was obtained in high yield. The direct polycondensation reaction of this diacid with several aromatic diols such as bisphenol A (5a), phenolphthalein (5b), 1,4‐dihydroxybenzene (5c), 4,4′‐dihydroxydiphenyl sulfide (5d), 4,6‐dihydroxypyrimidine (5e), 4,4′‐dihydroxydiphenyl sulfone (5f) and 2,4′‐dihydroxyacetophenone (5g) was carried out in a system of thionyl chloride and pyridine. Expecting that the reaction with thionyl chloride in pyridine might involve alternative intermediates different from an acyl chloride, the polycondensation at a higher temperature favorable for the reaction of the expected intermediate with nucleophiles was attempted, and a highly thermally stable poly(ester‐imide) was obtained by carrying out the reaction at 80°C. All of the above polymers were fully characterized by 1H‐NMR, 19F‐NMR FT‐IR spectroscopy, elemental analysis and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐ imide)s are reported. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

3.
The reaction of carbon dioxide with aniline using triphenyl phosphite in pyridine is greatly facilitated by the addition of hydrochlorides of tertiary amines such as pyridine and triethylamine, and has been successfully applied to the preparation of polyureas of high molecular weight from carbon dioxide and aromatic diamines. The presence of a catalytic amount of pyridine hydrochloride significantly increased the inherent viscosity of the resulting polymers, the highest value being obtained with about an equivalent of the chloride. Optimal temperatures and pressures varied with diamines used, and were 60–80°C and 40–50 atm of carbon dioxide. The polycondensation reaction was also affected by the solvent compositions of pyridine and N-methylpyrrolidone, its optimum being dependent on diamines used.  相似文献   

4.
Jiang  Jianwen  Huang  Shuiping  Liu  Yuan  Sheng  Shouri  Huang  Zhenzhong  Song  Caisheng 《中国化学》2010,28(1):102-110
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX) was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. A new diacyl chloride monomer, 9,9‐bis[4‐(chloroformylphenoxy)phenyl]xanthene (BCPX), was synthesized in three steps from the nucleophilic fluorodisplacement of 4‐fluorobenzonitrile with the dipotassium bisphenolate of BHPX, followed by alkaline hydrolysis of the intermediate bis(ether nitrile), and then chlorination with thionyl chloride. Several novel aromatic polyamides containing ether and bulky xanthene groups with the inherent viscosities (0.72–0.98 dL/g) were prepared by the low temperature polycondensation of BCPX with various aromatic diamines in N,N‐dimethylacetamide (DMAc) solution containing pyridine (Py). All new polyamides were amorphous and readily soluble in various polar solvents such as DMAc, N,N‐dimethylformamide (DMF), N‐methyl‐2‐pyrrolidone (NMP) and Py. These polymers showed relatively high glass transition temperatures between 236 and 298°C, decomposition temperatures at 10% weight loss ranging from 490 to 535°C and 483 to 515°C in nitrogen and air, respectively, and char yields at 700°C in nitrogen higher than 50%. Transparent, flexible, and tough films of these polymers cast from DMAc solutions exhibited tensile strengths ranging from 82 to 106 MPa, elongations at break from 10% to 25%, and initial moduli from 2.0 to 2.8 GPa.  相似文献   

5.
Mechanistic features of the reaction promoted by thionyl chloride and amides such as N-methylpyrrolidone (NMP) were studied. The reaction was effective in the amidation of carboxylic acids, but not effective in the esterification. The amidation was affected by the kind and the amount of amides used, most favorably by two equivalents of NMP with respect to the acid. These amides were assumed to be involved in the intermediate formation, and the reaction was proposed to proceed via Vilsmeier adducts derived from thionyl chloride and the amides, and through activation of a carboxylic acid different from an acyl chloride. The reaction was successfully applied to the direct polycondensation of aromatic dicarboxylic acids and diamines in NMP at 70°C to produce polyamides with high molecular weights. Initial reaction of dicarboxylic acids with the adducts, additive effect of tertiary amines, and polycondensation temperatures were studied in terms of the inherent viscosity of the polymers produced.  相似文献   

6.
The reaction of PcSi(OSiMe3)2 with Mg in the presence of Me3SiCl at 20–100°C was shown to cause the phthalocyamine macrocycle contraction and give the silicon α,β,γ-triazatetrabenzocorrole macrocycle. The reaction proceeds in the polar donor solvents (THF, pyridine), but does not occur in aromatic hydrocarbons. The electronic and EPR spectra indicate that the silicon phthalocyanine mono- and dianions are active intermediate reaction products.  相似文献   

7.
New polymer-forming monomers, 3-benzylidene-5-chloroformylphthalide and 3-benzylidene-6-chloroformylphthalide, were synthesized by the Perkin reaction of trimellitic anhydride with phenylacetic acid, followed by chlorination. The polycondensation of these monomers with aromatic diamines in N-methyl-2-pyrrolidone at 200°C afforded aromatic polyamide-phthalimidines having inherent viscosities of 0.2-0.5 dL/g. All the polymers were readily soluble in m-cresol, pyridine, dimethylformamide, and dimethyl sulfoxide. Glass transition temperatures of some of the polymers were in the range of 255–282°C. The polyamide-phthalimidines began to lose weight at around 300°C in both air and nitrogen atmospheres, with 10% weight losses being recorded at 435–475°C in nitrogen by thermogravimetry.  相似文献   

8.
The new polymer-forming diimide-diacid, 2,3-bis(4-trimellitimidophenoxy) naphthalene (I), was readily obtained by the condensation reaction of 2,3-bis (4-aminophenoxy) naphthalene with trimellitic anhydride. A series of novel aromatic poly (amide-imide)s were prepared by the direct polycondensation of diimide-diacid I with various aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. The resultant polymers have inherent viscosities in the range of 0.65–1.02 dL/g at 30°C in N, N-dimethylacetamide. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed tensile strength at break up to 86 MPa, elongation to break of 5–9%, and initial moduli up to 2.35 GPa. The wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or p-oxyphenylene group are partially crystalline, and the other polymers are evidenced as amorphous patterns. These polymers show a glass transition in the range of 213–290°C in their differential scanning calorimetry (DSC) traces. The thermal stability of the polymers was evaluated by thermogravimetry analysis, which showed the 10% weight-loss temperatures in the range of 508–565°C in nitrogen and 480–529°C in air atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
N-Phenylated aromatic polyamide-esters with high molecular weights were synthesized by the high-temperature solution polycondensation in nitrobenzene at 200°C from combinations of m- and p-anilinophenol and isophthaloyl and terephthaloyl chloride. Reaction variables such as monomer concentration, solvent, temperature, and time were studied to optimize the reaction conditions for the preparation of high molecular weight polymers. Some of the N-phenylated aromatic polyamide-esters have glass transition temperatures around 190°C and good solubility in chlorinated and amide solvents. These polymers gave transparent flexible films by solution-casting. Copolymers from p-anilinophenol and the two diacid chlorides were also synthesized and characterized.  相似文献   

10.
The direct polycondensation of isophthalic acid (IPA) and aromatic diamines with a new phosphorus compound, phenylphosphonic dichloride (PPDC), was studied. PPDC could actually react with nearly a two molar amount of carboxyl groups, but more than 75 mol % PPDC with respect to the carboxyl groups of IPA were satisfactorily used in the polycondensation. The initial reaction of IPA with PPDC in pyridine at room temperature and then at 120°C was needed to complete the activation, and the subsequent aminolysis at 120°C for 3 h was most effective. The polyamides of high inherent viscosity were obtained even from weakly basic aromatic diamines, and their values were more than those obtained by the conventional method. In their thermal properties determined by the DTA, they showed Tgs and Tms higher than those reported before.  相似文献   

11.
Reactions of acetyl iodide with pyridine at room temperature and with quinoline both at 20–25°C and on cooling to −50°C involve dehydrohalogenation of acetyl iodide with formation of ketene and pyridinium or quinolinium iodides. The reaction of acetyl iodide with pyridine at −5 to −50°C led to the formation of N-acetylpyridinium iodide. Benzoyl iodide reacted with both pyridine and quinoline at both −50°C and at 20–25°C to form stable N-benzoylpyridinium and N-benzoylquinolinium iodides. The reaction of pyrrole with acetyl iodide under analogous conditions was accompanied by polymerization.  相似文献   

12.
Novel aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene ( IV ) and aromatic diamines using triphenyl phosphite in the N-methyl–2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The diimide-diacid IV was readily obtained by the condensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene ( III 1) with trimellitic anhydride. The obtained poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmospheres were above 550°C and the anaerobic char yield at 800°C ranged from 48 to 68%. Almost all the poly(amide-imide)s showed high glass transition temperatures above 300°C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed obvious yield points in the stress-strain curves and had strength at break up to 74.2 MPa, elongation to break up to 70.1%, and initial modulus up to 4.56 GPa. The factors affecting the reaction of diimide-diacid IV and 4,4′-oxydianiline in view of monomer concentration, reaction temperature, and amount of CaCl2 were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
A novel pyridine‐containing aromatic phthalonitrile monomer, 2,6‐bis[4‐(3,4‐dicyanophenoxy)benzoyl]pyridine (BCBP) was synthesized from the nitro displacement of 4‐nitrophthalonitrile by the phenoxide of 2,6‐bis (4‐hydroxybenzoyl)pyridine (BHBP). 4‐(Aminophenoxy) phthalonitrile (APPH) was selected to promote the curing reaction, and the curing behavior has been investigated by differential scanning calorimetric (DSC), suggesting a wide processing window about 64 °C. Different curing additive concentrations resulted in polymers with different crosslinking degrees and subsequently influenced the performance of resins. The resulting BCBP polymer exhibited high glass transition temperatures exceeding 400 °C, outstanding thermo‐oxidative stability with weight retention of 95% at 530 °C, indicating a significant improvement in thermal properties endowed by pyridine units. Additionally, it also showed a lower overall water absorption after submersion in boiling water for 50 hours. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3819–3825  相似文献   

14.
Various new fluorinated heterocyclic copolyimides have been synthesized by a polycondensation reaction of a diacid chloride containing imide, hexafluoroisopropylidene and methylene groups with aromatic or heteroaromatic diamines containing preformed phenylquinoxaline or 1,3,4-oxadiazole rings. Other fluorinated heterocyclic copolyimides have been prepared by a polycondensation reaction of the same diacid chloride with aromatic dihydrazides, bis(o-hydroxy-amine)s or a bis(o-carboxy-amine), resulting in intermediate polyhydrazides, poly(o-hydroxy-amide)s or poly(o-carboxy-amide), respectively, which were futher cyclodehydrated to the corresponding polyoxadia zole-imide, polybenzoxazole-imide or polybenzoxazinone-imide structure. These polymers showed good solubility in polar amidic solvents, such as N-methylpyrrolidinone (NMP) and dimethylformamide (DMF), and even in less polar liquids, like tetrahydrofurane or pyridine, except for those compounds containing benzoxazole rings which were less soluble, only on heating in NMP or DMF. The weight average molecular weight measured for tetrahydrofurane-fully-soluble polymers are in the range of 12800–26700 and the polydispersity is in the range of 2–5. All these polymers exhibited good thermal stability, with decomposition temperature being above 350°C, although somewhat lower than that of related polymers prepared by using fully aromatic diacid chlorides instead of the present ones containing methylene units. The glass transition temperature is in the range of 200–300°C. The dielectric constant measured for polymer films is in the range of 3.3–3.7. Tensile strength is in the range of 35–70 MPa, elongation to break between 30–40% and tensile modulus in the range of 170–330 MPa. A study of the relation between conformational parameters and properties of some of these polymers has been carried out by using the Monte Carlo method with an allowance for hindered rotation, and the values were compared with the experimental data and discussed in relation with the rigidity of the chains. The present polymers are potential candidates for use as high performance materials.  相似文献   

15.
Aromatic tetracarboxylic dianhydride having crank and twisted noncoplanar structure, 2,2′-bis(3,4-dicarboxyphenoxy)-1,1′-binaphthyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with 2,2′-dihydroxy-1,1′-binaphthyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). Binaphthyl-2,2′-diyl–containing novel aromatic polyimides having inherent viscosities up to 0.67 dL/g were obtained by the one-step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and pyridine. These aromatic polyimides had glass transition temperatures in the range of 280–350°C, depending on the nature of the diamine moiety. All polymers were stable up to 400°C, with 10% weight loss being recorded above 485°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1937–1943, 1998  相似文献   

16.
Polyterephthalamides of high molecular weight (ηinh up to 1.9) were obtained by the direct polycondensation reaction of terephthalic acid and aromatic diamines in the presence of poly(ethylene oxide) (PEO) with triphenyl phosphite in a N-methylpyrrolidone (NMP)–pyridine solution that contained lithium chloride. The molecular weights of the polymers produced varied with the amount and molecular weight of PEO, which showed maximum values when PEO with a molecular weight of 2.0 × 104?5.0 × 105 was used in a concentration of about 0.5 wt % in the solvent. The polycondensation reaction was significantly affected by the level of pyridine in a mixed solvent of NMP and pyridine and by the concentration of the lithium chloride added.  相似文献   

17.
N-Phenylated aromatic polyamides and copolyamides derived from N,N′-diphenyl-p-phenylenediamine, isophthaloyl, and terephthaloyl chloride were prepared by high-temperature solution polycondensation in anisole at 155°C. Factors that influenced the reaction, such as monomer concentration, solvent, temperature, and time, were studied to determine the optimum conditions for the preparation of high molecular weight polymers. Compared with analogous unsubstituted aromatic polyamides, the N-phenylated polymers exhibited better solubility in chlorinated and amide solvents, reduced crystallinity, and lower glass transition temperatures (above 200°C). All polymers except the polyterephthalamide could be solvent-cast, as well as hot-pressed, into transparent flexible films.  相似文献   

18.
Direct arylation of the ortho‐C? H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron‐diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co‐solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C? H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C? H bond‐activation step.  相似文献   

19.
New polyphthalimidine-forming monomers, 5,5′-(oxydi-p-phenylenedicarbonyl)bis(3-benzylidenephthalide) and the 6,6′-derivative, were synthesized by the Friedel–Crafts reaction of diphenyl ether with 5- and 6-chloroformyl-3-benzylidenephthalide, respectively. The direct polycondensation of these bisphthalides with both aliphatic and aromatic diamines in o-phenylphenol at 200–250°C afforded polyphthalimidines having inherent viscosities of 0.2–1.2 dL/g in almost quantitative yields. Syntheses of aliphatic polyphthalimidines with higher inherent viscosities were also achieved by a two-step procedure involving ring-opening polyaddition and subsequent thermal cyclodehydration. All the polymers were amorphous and readily soluble in N-methyl-2-pyrrolidone (NMP), m-cresol, nitrobenzene, pyridine, and chloroform. Tough and flexible films could be cast from NMP solutions of the polymers. Glass transition temperatures of the polyphthalimidines were in the range of 158–246°C. The thermogravimetry of the aromatic polymers showed 10% weight loss in air and nitrogen at 445–515 and 500–520°C, respectively. The crosslinking reaction of some benzylidenependant polyphthalimidines took place at 300°C through double-bond addition to afford cured polymers with improved thermal stability.  相似文献   

20.
A new aromatic dicarboxylic acid, 9,9-bis[4-(4-carboxyphenoxy)-3-methylphenyl]xanthene (BCAMPX) was prepared from the nucleophilic substitution reaction of 9,9-bis(4-hydroxy-3-methylphenyl)xanthene with p-fluorobenzonitrile, followed by alkaline hydrolysis. Then BCAMPX was polycondensated with various aromatic diamines to afford the polyamides with the number-average molecular weight in the range of 45,300–51,500 and the polydispersity index ranged from 1.67 to 1.85. These polyamides showed glass transition temperatures between 260–286°C and 10% weight loss temperatures ranging from 490 to 504°C and 480 to 490°C in nitrogen and air respectively, and char yields above 52% at 800°C in nitrogen. Nearly all polyamides were readily soluble polar aprotic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), tetrahydrofuran and pyridine, and afforded transparent, strong and flexible films upon casting from DMAc solvent. All polyamides were amorphous and exhibited tensile strengths of 80–91 MPa, elongations at break of 9–13%, and initial moduli of 1.95–2.82 GPa, as well as low moisture absorption in the range of 2.65–3.65%, and high transparency with an ultraviolet–visible absorption cut-off wavelength in the 360–378 nm range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号