首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Here we present a new solution procedure for Helm-holtz and Laplacian Dirichlet screen and crack problems in IR2 via boundary integral equations of the first kind having as an unknown the jump of the normal derivative across the screen or a crack curve T. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problem. Via the method of local Mellin transform in [5]-[lo] and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behaviour near the screen or crack tips.With our integral equations we set up a Galerkin scheme on T and obtain high quasi-optimal convergence rates by using special singular elements besides regular splines as test and trial functions.  相似文献   

2.
In this paper we analyze the solution of crack problems in three-dimensional linear elasticity by equivalent integral equations of the first kind on the crack surface. Besides existence and uniqueness we give sharp regularity results for the solution of these pseudodifferential equations. Two versions of Eskin's Wiener-Hopf technique are presented: the first one requires the factorization of matrix-valued symbols which is avoided in the second case. Based on these regularity results we show how to improve the boundary element Galerkin method for our integral equations by using special singular trial functions. We apply the approximation property and inverse assumption of these elements together with duality arguments and derive quasi-optimal asymptotic error estimates in a scale of Sobolev spaces.Dedicated to Prof. Dr.-Ing. W. L. Wendland on the occasion of his 50th birthday.A part of this work was done while the first author was a guest at the Georgia Institute of Technology and while the second author was partially supported by the NSF grant DMS-8501797.  相似文献   

3.
Here we present a new solution procedure for Helmholtz and Laplacian Neumann screen or Dirichlet screen problems in IR3 via boundary integral equations of the first kind having as unknown the jump of the field or of its normal derivative, respectively, across the screen S. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problems. Via the Wiener-Hopf method in the halfspace, localization and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behavior near the edge of the screen. We give Galerkin schemes based on our integral equations on S and obtain high convergence rates by using special singular elements besides regular splines as test and trial functions.  相似文献   

4.
Summary. Variational boundary integral equations for Maxwell's equations on Lipschitz surfaces in are derived and their well-posedness in the appropriate trace spaces is established. An equivalent, stable mixed reformulation of the system of integral equations is obtained which admits discretization by Galerkin boundary elements based on standard spaces. On polyhedral surfaces, quasioptimal asymptotic convergence of these Galerkin boundary element methods is proved. A sharp regularity result for the surface multipliers on polyhedral boundaries with plane faces is established. Received January 5, 2001 / Revised version received August 6, 2001 / Published online December 18, 2001 Correspondence to: C. Schwab  相似文献   

5.
A weakly singular integral equation of the first kind on a plane surface piece Γ is solved approximately via the Galerkin method. The determination of the solution of this integral equation (with the single-layer potential) is a classical problem in physics, since its solution represents the charge density of a thin, electrified plate Γ loaded with some given potential. Using piecewise constant or piecewise bilinear boundary elements we derive asymptotic estimates for the Galerkin error in the energy norm and analyse the effect of graded meshes. Estimates in lower order Sobolev norms are obtained via the Aubin–Nitsche trick. We describe in detail the numerical implementation of the Galerkin method with both piecewise-constant and piecewise-linear boundary elements. Numerical experiments show experimental rates of convergence that confirm our theoretical, asymptotic results.  相似文献   

6.
In this paper we propose a hybrid between direct and indirect boundary integral methods to solve a transmission problem for the Helmholtz equation in Lipschitz and smooth domains. We present an exhaustive abstract study of the numerical approximation of the resulting system of boundary integral equations by means of Galerkin methods. Some particular examples of convergent schemes in the smooth case in two dimensions are given. Finally, we extend the results to a thermal scattering problem in a half plane with several obstacles and provide numerical results that illustrate the accuracy of our methods depending on the regularity of the interface.  相似文献   

7.
In this paper we analyze a family of full discretizations of spline Galerkin methods for a class of systems of boundary integral equations of the first kind with logarithmic principal part. We prove the existence of an asymptotic expansion of the error of the Galerkin and the optimal order Galerkin collocation method. We finally derive asymptotic expansions for some common postprocessings of the solutions, both exactly and under the effect of additional discretization. Some examples where these techniques apply are provided.  相似文献   

8.
Nowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods. In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one-dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8]. The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.  相似文献   

9.
The problem of an elastic half-space with stress-free surface and a crack of arbitrary shape with prescribed displacements or tractions is reduced to an equivalent system of integral equations on the crack. For a pressurized crack in a plane perpendicular to the free surface, a scalar integral equation is derived. In properly chosen function spaces, unique solvability of the integral equation and regularity of solutions for regular data are proven.  相似文献   

10.
A hypersingular boundary integral equation of the first kind on an open surface piece Γ is solved approximately using the Galerkin method. As boundary elements on rectangles we use continuous, piecewise bilinear functions which vanish on the boundary of Γ. We show how to compensate for the effect of the edge and corner singularities of the true solution of the integral equation by using an appropriately graded mesh and obtain the same convergence rate as for the case of a smooth solution. We also derive asymptotic error estimates in lower-order Sobolev norms via the Aubin–Nitsche trick. Numerical experiments for the Galerkin method with piecewise linear functions on triangles demonstrate the effect of graded meshes and show experimental rates of convergence which underline the theoretical results.  相似文献   

11.
In this study, we examine the dynamic behavior of two bonded dissimilar piezoelectric layers containing multiple interfacial cracks subjected to electro-mechanical impact loading. The problem was formulated through Fourier transformation into singular integral equations in which the unknown variables are the jumps of displacement and electric potential across the crack surface in the Laplace transform domain. The resulting integral equations together with the corresponding single-valued conditions are solved numerically for the densities of electro-elastic dislocations on a crack surface. The dynamic field intensity factors and dynamic energy release rate (DERR) history are obtained for both permeable and impermeable crack. The stress field is also obtained for the interface crack under impact loads. The results show that the field intensity factors at the crack tips and dynamic energy release rate depend on the interfacial crack geometry, electromechanical coupling and the electric boundary conditions on the crack surface.  相似文献   

12.
In this paper, we will propose a boundary element method for solving classical boundary integral equations on complicated surfaces which, possibly, contain a large number of geometric details or even uncertainties in the given data. The (small) size of such details is characterised by a small parameter and the regularity of the solution is expected to be low in such zones on the surface (which we call the wire-basket zones). We will propose the construction of an initial discretisation for such type of problems. Afterwards standard strategies for boundary element discretisations can be applied such as the h, p, and the adaptive hp-version in a straightforward way. For the classical boundary integral equations, we will prove the optimal approximation results of our so-called wire-basket boundary element method and discuss the stability aspects. Then, we construct the panel-clustering and -matrix approximations to the corresponding Galerkin BEM stiffness matrix. The method is shown to have an almost linear complexity with respect to the number of degrees of freedom located on the wire basket.  相似文献   

13.
Summary We present a multigrid method to solve linear systems arising from Galerkin schemes for a hypersingular boundary integral equation governing three dimensional Neumann problems for the Laplacian. Our algorithm uses damped Jacobi iteration, Gauss-Seidel iteration or SOR as preand post-smoothers. If the integral equation holds on a closed, Lipschitz surface we prove convergence ofV- andW-cycles with any number of smoothing steps. If the integral equation holds on an open, Lipschitz surface (covering crack problems) we show convergence of theW-cycle. Numerical experiments are given which underline the theoretical results.  相似文献   

14.
Summary We formulate and prove Aubin-Nitsche-type duality estimates for the error of general projection methods. Examples of applications include collocation methods and augmented Galerkin methods for boundary integral equations on plane domains with corners and three-dimensional screen and crack problems. For some of these methods, we obtain higher order error estimates in negative norms in cases where previous formulations of the duality arguments were not applicable.  相似文献   

15.
We investigate a three‐dimensional mathematical thermoelastic scattering problem from an open surface which will be referred to as a screen. Under the assumption of the local finite energy of the unified thermoelastic scattered field, we give a weak model on the appropriate Sobolev spaces and derive equivalent integral equations of the first kind for the jump of some trace operators on the open surface. Uniqueness and existence theorems are proved, the regularity and the singular behaviour of the solution near the edge are established with the help of the Wiener–Hopf method in the halfspace, the calculus of pseudodifferential operators on the basis of the strong ellipticity property and Gårding's inequality. An improved Galerkin scheme is provided by simulating the singular behaviour of the exact solution at the edge of the screen. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we first give error estimates for the moving least square (MLS) approximation in the Hk norm in two dimensions when nodes and weight functions satisfy certain conditions. This two-dimensional error results can be applied to the surface of a three-dimensional domain. Then combining boundary integral equations (BIEs) and the MLS approximation, a meshless Galerkin algorithm, the Galerkin boundary node method (GBNM), is presented. The optimal asymptotic error estimates of the GBNM for three-dimensional BIEs are derived. Finally, taking the Dirichlet problem of Laplace equation as an example, we set up a framework for error estimates of the GBNM for boundary value problems in three dimensions.  相似文献   

17.
1. IntroductionWe try to solve the following illtegral equationwhere ac is a constant, and b(x,y) is a continuous fUnction of (x,y) and is Zx periodic in eaCh vaxiable, which appeaxs in oterinr boundaly value Problems for thetwrvdimensional Helinholtz opatinn (see [9], [131, [14], [12], [24]). We ~ to solvethe eqllation by using wavelets. The most hnPOrted method on solving intepal eqlltions was, introduced in [3], but the method introduced in [3] can not be aPPlied directlyto this equatin…  相似文献   

18.
An efficient numerical technique is developed for plane, homogeneous, isotropic, steady-state thermoelasticity problems involving arbitrary internal smooth and/or kinkedcracks. The thermal stress intensity factors and relative crack surface displacements due to steady-state temperature distributions are determined and compared to available solutions obtained by other methods. In these analyses the thermal boundary conditions across the crack surface are assumed to be insulated. The present approach involves coupling the direct boundary integral equations to newly developed crack integral equations.  相似文献   

19.
The paper presents a Galerkin numerical method for solving the hyper-singular boundary integral equations for the exterior Helmholtz problem in three dimensions with a Neumann's boundary condition. Previous work in the topic has often dealt with the collocation method with a piecewise constant approximation because high order collocation and Galerkin methods are not available due to the presence of a hypersingular integral operator. This paper proposes a high order Galerkin method by using singularity subtraction technique to reduce the hyper-singular operator to a weakly singular one. Moreover, we show here how to extend the previous work (J. Appl. Numer. Math. 36 (4) (2001) 475–489) on sparse preconditioners to the Galerkin case leading to fast convergence of two iterative solvers: the conjugate gradient normal method and the generalised minimal residual method. A comparison with the collocation method is also presented for the Helmholtz problem with several wavenumbers.  相似文献   

20.
Summary. We analyze the boundary element Galerkin method for weakly singular and hypersingular integral equations of the first kind on open surfaces. We show that the hp-version of the Galerkin method with geometrically refined meshes converges exponentially fast for both integral equations. The proof of this fast convergence is based on the special structure of the solutions of the integral equations which possess specific singularities at the corners and the edges of the surface. We show that these singularities can be efficiently approximated by piecewise tensor products of splines of different degrees on geometrically graded meshes. Numerical experiments supporting these results are presented. Received December 19, 1996 / Revised version received September 24, 1997 / Published online August 19, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号