首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ameliorated recurrence relations for the calculation of matrix elements of central potential wavefunctions are presented. These were obtained by using the hypervirial theorem with V(r) three-dimensional potentials and f (r) arbitrary functions. This procedure leads to a generalization of the usual l = l′ diagonal three-dimensional and l == 0 one-dimensional hypervirial relations of first and second class. The use of this kind of generalization to the calculation of rk integrals, allows one to obtain all off-diagonal recursion formulas for any V(r). Besides, for hydrogenic wavefunctions one gets to equations that reduce to the usual Kramer's rule as a particular diagonal case. The proposed approach can be straightforwardly extended to obtain recurrence relations for the calculation of two center integrals.  相似文献   

2.
The effective utilization of hypervirial relations is scrutinized to improve the approximate excited-state functions in the harmonic oscillator system. A new method is presented which simultaneously employs the off-diagonal hypervirial relations with the diagonal hypervirial relation. In order to use these relations effectively, the following points are pointed out: (i) the presented method is useful to get better reasonable results for the excitation energies and the state functions; (ii) the ground state given must satisfy the virial theorem; (iii) in the hypervirial operator used here as xm, the smaller integers of m's present better results; and (iv) the employment of the comparatively small number of trial basis functions of the type exp (?γ|x|) is sufficient for reproducing the exact excited state. Especially among them, condition (ii) plays an important role. Applying all the proposals to the first and the second excited states, one gets a highly improved excitation energy, state function, and other physical quantities (e.g., transition moment and oscillator strength). The presented method is also found to be more effective than the employment of only the off-diagonal hypervirial relations or the method of the scaling operation.  相似文献   

3.
4.
Generalized recurrence relations for the calculation of multipole matrix elements for Kratzer potential wave functions are obtained operationally. These formulas have been determined by using a non-analytical procedure based on the algebraic representation of the Kratzer eigenfunctions along with the usual ladder properties and commutation relations. For that, the creation and annihilation operators are adequately derived by means of an alternative approach to the factorization method and the exact expressions for matrix elements are achieved with the aid of a relationship between the ladder operators associated with the bra and theket. The proposed algebraic approach as well as the formulas for the calculation of matrix elements thus derived are quite simple and direct when compared with other alternative expressions already obtained analytically or pseudo-algebraically by means of the hypervirial theorem commutator algebra.  相似文献   

5.
Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl + CH2F2) = 1.19 × 10?17 T2 exp(?1023/T) cm3 molecule?1 s?1 (253–553 K), k(Cl + CH3CCl3) = 2.41 × 10?12 exp(?1630/T) cm3 molecule?1 s?1 (253–313 K), and k(Cl + CF3CFH2) = 1.27 × 10?12 exp(?2019/T) cm3 molecule?1 s?1 (253–313 K). Results are discussed with respect to the literature data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 401–406, 2009  相似文献   

6.
It is well known that hydrogen like atoms may be represented as Morse oscillators. Our aim in this article was to show how this result and the hypervirial theorem lead to a computational method with which the matrix elements for the Coulomb potential can be easily calculated. Also, a closed analytical expression for 〈n2l2|rk|n1l1〉 is obtained. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k(T) = 2.1 × 1017exp(?56575.98/T), k(T) = 2.1 × 1017exp(?57587.45/T), and k(T) = 3.3 × 1016exp(?57594.79/T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k(T) = 2 × 1018exp(?59343.48.18/T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.  相似文献   

8.
Single pulse shock tube studies of the thermal dehydrochlorination reactions (chlorocyclopentane → cyclopentene + HCl) and (chlorocyclohexane → cyclohexene + HCl) at temperatures of 843–1021 K and pressures of 1.4–2.4 bar have been carried out using the comparative rate technique. Rate constants have been measured relative to (2‐chloropropane → propene + HCl) and the decyclization reactions of cyclohexene, 4‐methylcyclohexene, and 4‐vinylcyclohexene. Absolute rate constants have been derived using k(cyclohexene → ethene + butadiene) = 1.4 × 1015 exp(?33,500/T) s?1. These data provide a self‐consistent temperature scale of use in the comparison of chemical systems studied with different temperature standards. A combined analysis of the present results with the literature data from lower temperature static studies leads to
  • k(2‐chloropropane) = 10(13.98±0.08) exp(?26, 225 ± 130) K/T) s?1; 590–1020 K; 1–3 bar
  • k(chlorocylopentane) = 10(13.65 ± 0.10) exp(?24,570 ± 160) K/T) s?1; 590–1020 K; 1–3 bar
  • k(chlorocylohexane) = 10(14.33 ± 0.10) exp(?25,950 ± 180) K/T) s?1; 590–1020 K; 1–3 bar
Including systematic uncertainties, expanded standard uncertainties are estimated to be about 15% near 600 K rising to about 25% at 1000 K. At 2 bar and 1000 K, the reactions are only slightly under their high‐pressure limits, but falloff effects rapidly become significant at higher temperatures. On the basis of computational studies and Rice–Ramsperger–Kassel–Marcus (RRKM)/Master Equation modeling of these and reference dehydrochlorination reactions, reported in more detail in an accompanying article, the following high‐pressure limits have been derived:
  • k (2‐chloropropane) = 5.74 × 109T1.37 exp(?25,680/T) s?1; 600–1600 K
  • k (chlorocylopentane) = 7.65 × 107T1.75 exp(?23,320/T) s?1; 600–1600 K
  • k (chlorocylohexane) = 8.25 × 109T1.34 exp(?25,010/T) s?1; 600–1600 K
© 2011 Wiley Periodicals, Inc.
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  • Int J Chem Kinet 44: 351–368, 2012  相似文献   

    9.
    A high‐resolution IR diode laser in conjunction with a Herriot multiple reflection flow‐cell has been used to directly determine the rate coefficients for simple alkanes with Cl atoms at room temperature (298 K). The following results were obtained: k(Cl + n‐butane) = (1.91 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐pentane) = (2.46 ± 0.12) × 10?10 cm3 molecule?1 s?1, k(Cl + iso‐pentane) = (1.94 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + neopentane) = (1.01 ± 0.05) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐hexane) = (3.44 ± 0.17) × 10?10 cm3 molecule?1 s?1 where the error limits are ±1σ. These values have been used in conjunction with our own previous measurements on Cl + ethane and literature values on Cl + propane and Cl + iso‐butane to generate a structure activity relationship (SAR) for Cl atom abstraction reactions based on direct measurements. The resulting best fit parameters are kp = (2.61 ± 0.12) × 10?11 cm3 molecule?1 s?1, ks = (8.40 ± 0.60) × 10?11 cm3 molecule?1 s?1, kt = (5.90 ± 0.30) × 10?11 cm3 molecule?1 s?1, with f( ? CH2? ) = f (? CH2? ) = f (?C?) = f = 0.85 ± 0.06. Tests were carried out to investigate the potential interference from production of excited state HCl(v = 1) in the Cl + alkane reactions. There is some evidence for HCl(v = 1) production in the reaction of Cl with shape n‐hexane. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 86–94, 2002  相似文献   

    10.
    The mechanisms for reactions of H, HO, and Cl with HOClO3, important elementary processes in the early stages of the ammonium perchlorate (AP) combustion reaction, have been investigated at the CCSD(T)/6‐311+G(3df,2p)//PW91PW91/6‐311+G(3df) level of theory. The rate constants for the low‐energy channels have been calculated by statistical theory. For the reaction of H and HOClO3, the main channels are the production of H2 + ClO4 (k1a) and HO + HOClO2 (k1b); k1a and k1b can be represented as 1.07 × 10?17 T1.97 exp(?7484/T) and 6.08 × 10?17T1.96 exp(?7729/T) cm3 molecule?1 s?1, respectively. For the HO + HOClO3 reaction, the main pathway is the H2O + ClO4 (k2a) production process, with the predicted rate constant k2a = 1.24 × 10 ?8 T?2.99 exp(1664/T) for 300–500 K and k2a = 1.27×10?19 T2.12 exp(?1474/T) for 500–3000 K. For the Cl + HOClO3 reaction, the formation of HOCl + ClO3 (k3a) and HCl + ClO4 (k3b) is dominant, with k3a = 1.33×10?12 T0.67 exp(?9658/T) and k3b = 1.75×1016 T1.63 exp(?11156/T) cm3 molecules?1 in the range of 300–3000 K. In addition, the heats of formation of ClO3 and HOClO3 have been predicted based on several isodesmic and/or isogyric reactions with ΔfHo0 (ClO3) = 47.0 ± 1.0 and ΔfHo0 (HOClO3) = 5.5 ± 1.5 kcal/mol, respectively. These data may be used for kinetic simulation of the AP decomposition and combustion reaction. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 253–261, 2010  相似文献   

    11.
    Absolute rate coefficients for the reactions of the hydroxyl radical with ethane (k1, 297–300 K) and propane (k2, 297–690 K) were measured using the flash photolysis–resonance fluorescence technique. The rate coefficient data were fit by the following temperature-dependent expressions, in units of cm3/molecule·s: k1(T) = 1.43 × 10?14T1.05 exp (?911/T) and k2(T) = 1.59 × 10?15T1.40 exp (-428/T). Semiquantitative separation of OH-propane reactivity into primary and secondary H-atom abstraction channels was obtained.  相似文献   

    12.
    An analysis of thermochemical and kinetic data on the bromination of the halomethanes CH4–nXn (X = F, Cl, Br; n = 1–3), the two chlorofluoromethanes, CH2FCl and CHFCl2, and CH4, shows that the recently reported heats of formation of the radicals CH2Cl, CHCl2, CHBr2, and CFCl2, and the C? H bond dissociation energies in the matching halomethanes are not compatible with the activation energies for the corresponding reverse reactions. From the observed trends in CH4 and the other halomethanes, the following revised ΔH°f,298 (R) values have been derived: ΔH°f(CH2Cl) = 29.1 ± 1.0, ΔH°f(CHCl2) = 23.5 ± 1.2, ΔHf(CH2Br) = 40.4 ± 1.0, ΔH°f(CHBr2) = 45.0 ± 2.2, and ΔH°f(CFCl2) = ?21.3 ± 2.4 kcal mol?1. The previously unavailable radical heat of formation, ΔH°f(CHFCl) = ?14.5 ± 2.4 kcal mol?1 has also been deduced. These values are used with the heats of formation of the parent compounds from the literature to evaluate C? H and C? X bond dissociation energies in CH3Cl, CH2Cl2, CH3Br, CH2Br2, CH2FCl, and CHFCl2.  相似文献   

    13.
    Synthesis, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the mer ‐Trihalogeno‐tris‐Pyridine‐Osmium(III) Complexes mer‐[OsX3Py3], X = Cl, Br, I By reaction of the hexahalogenoosmates(IV) with pyridine and iso‐amylalcohol mer‐trihalogeno‐tris‐pyridine‐osmium(III) complexes are formed and purified by chromatography. X‐ray structure determinations on single crystals have been performed of mer‐[OsBr3Py3] (monoclinic, space group P21/n, a = 9.098(5), b = 12.864(5), c = 15.632(5) Å, β = 90.216(5)°, Z = 4) and mer‐[OsI3Py3] (monoclinic, space group P21/n, a = 9.0952(17), b = 13.461(4), c = 15.891(10), β = 91.569(5)°, Z = 4). The pyridine rings are twisted propeller‐like against the N3 meridional plane with mean angles of 49° (Cl), 46° (Br), 44° (I). Based on the molecular parameters of the X‐ray structure determinations and assuming C2 point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis. Due to the stronger trans influence of pyridine as compared with the halide ligands for N'–Os–X · axes significantly different valence force constants are observed in comparison with symmetrically coordinated octahedron axes: fd(OsCl) = 1.74, fd(OsCl·) = 1.49, fd(OsBr) = 1.43, fd(OsBr · ) = 1.18, fd(OsI) = 0.99, fd(OsI · ) = 0.96, fd(OsN) between 1.96 and 2.07 and fd(OsN') between 2.13 and 2.32 mdyn/Å.  相似文献   

    14.
    The multiple‐channel reactions X + CF3CH2OCF3 (X = F, Cl, Br) are theoretically investigated. The minimum energy paths (MEP) are calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for major reaction channels are calculated by canonical variational transition state theory (CVT) with small‐curvature tunneling (SCT) correction over the temperature range 200–2000 K. The theoretical three‐parameter expressions for the three channels k1a(T) = 1.24 × 10?15T1.24exp(?304.81/T), k2a(T) = 7.27 × 10?15T0.37exp(?630.69/T), and k3a(T) = 2.84 × 10?19T2.51 exp(?2725.17/T) cm3 molecule?1 s?1 are given. Our calculations indicate that hydrogen abstraction channel is only feasible channel due to the smaller barrier height among five channels considered. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

    15.
    Laser flash photolysis combined with competition kinetics with SCN? as the reference substance has been used to determine the rate constants of OH radicals with three fluorinated and three chlorinated ethanols in water as a function of temperature. The following Arrhenius expressions have been obtained for the reactions of OH radicals with (1) 2‐fluoroethanol, k1(T) = (5.7 ± 0.8) × 1011 exp((?2047 ± 1202)/T) M?1 s?1, (2) 2,2‐difluoroethanol, k2(T) = (4.5 ± 0.5) × 109 exp((?855 ± 796)/T) M?1 s?1, (3) 2,2,2‐trifluoroethanol, k3(T) = (2.0 ± 0.1) × 1011 exp((?2400 ± 790)/T) M?1 s?1, (4) 2‐chloroethanol, k4(T) = (3.0 ± 0.2) × 1010 exp((?1067 ± 440)/T) M?1 s?1, (5) 2, 2‐dichloroethanol, k5(T) = (2.1 ± 0.2) × 1010 exp((?1179 ± 517)/T) M?1 s?1, and (6) 2,2,2‐trichloroethanol, k6(T) = (1.6 ± 0.1) × 1010 exp((?1237 ± 550)/T) M?1 s?1. All experiments were carried out at temperatures between 288 and 328 K and at pH = 5.5–6.5. This set of compounds has been chosen for a detailed study because of their possible environmental impact as alternatives to chlorofluorocarbon and hydrogen‐containing chlorofluorocarbon compounds in the case of the fluorinated alcohols and due to the demonstrated toxicity when chlorinated alcohols are considered. The observed rate constants and derived activation energies of the reactions are correlated with the corresponding bond dissociation energy (BDE) and ionization potential (IP), where the BDEs and IPs of the chlorinated ethanols have been calculated using quantum mechanical calculations. The errors stated in this study are statistical errors for a confidence interval of 95%. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 174–188, 2008  相似文献   

    16.
    Single-exponential Slater type orbitals of the form ψ1 = (1 + L1(r, θ) + L2(r, θ) +…?+ Ln(r, θ)) exp (? αr) are examined for their potential use as one-center molecular orbitals. These are then to be used as molecular fragments in a LCMO study. The system examined is HeH+ + with calculated energies and dipole moments being compared to the exact values. These functions behave best in the region of chemical interest (the bonding region) and thus demonstrate a possible usefulness in LCMO calculations and in the field of one-electron diatomics.  相似文献   

    17.
    Far-infrared rotational transitions in ClO(X23/2, υ = 0) have been observed using laser magnetic resonance (LMR) with an optically pumped spectrometer. Five observed transitions at wavelengths between 444 and 713 µm have been compared with values predicted with spectroscopic constants from the literature. LMR detection of ClO has been used to study its reactions with NO and NO2 in a discharge flow system under pseudo-first-order conditions for ClO. The measured rate constants are k(ClO + NO) = (7.1 ± 1.4) × 10?12 exp[(270 ± 50)/T] cm3/molec·s for the temperature range of 202 < T < 393 K; k(ClO + NO2 + M) = (2.8 ± 0.6) × 10?33 exp[(1090 ± 80)/T] cm6/molec2·s (M = He, 250 < T < 387 K), (3.5 ± 0.6) × 10?33 exp[(1180 ± 80)/T] (M = O2, 250 < T < 416 K), and (2.09 ± 0.3) × 10?31 (M = N2, T = 297 K). All measurements were made at low pressures, between 0.6 and 6.6 torr. These results are compared with those from other studies.  相似文献   

    18.
    New equations for torque and atomic force are derived for use in flexible molecule force fields with atomic multipoles. The expressions are based on Cartesian tensors with arbitrary multipole rank. The standard method for rotating Cartesian tensor multipoles and calculating torque is to first represent the tensor with n indexes and 3n redundant components. In this work, new expressions for directly rotating the unique (n + 1)(n + 2)/2 Cartesian tensor multipole components Θpqr are given by introducing Cartesian tensor rotation matrix elements X( R ). A polynomial expression and a recursion relation for X( R ) are derived. For comparison, the analogous rotation matrix for spherical tensor multipoles are the Wigner functions D( R ). The expressions for X( R ) are used to derive simple equations for torque and atomic force. The torque and atomic force equations are applied to the geometry optimization of small molecule crystal unit cells. In addition, a discussion of computational efficiency as a function of increasing multipole rank is given for Cartesian tensors. © 2016 Wiley Periodicals, Inc.  相似文献   

    19.
    A model describing the effect of counterion X (X = Cl, I) on the deactivation kinetics of the S 1 state of thiacarbocyanine Cy+X is presented. According to the model, the ion pair Cy+X in a binary solution is characterized by a distribution function f(r) over interatomic distances r, which depends on the composition of the mixture. The assumption of kinetically independent local states of the ion pair, which decay with the rate constants k i(r)(i = 1–4 is the index of the decay channel), is made. The statistic analysis of the experimental data in terms of the model permitted us to find the functions f(r) and to estimate the parameters of the constants k i(r).  相似文献   

    20.
    Vinylacetylene was pyrolyzed at 300–450°C in a packed and an unpacked static reactor with a pinhole bleed to a quadrupole mass spectrometer. The reactant and C8H8 products were monitored continuously during a reaction by mass spectrometry. In some runs, the products were also analyzed by gas chromatography after the run. In these runs CH4, C2H6, C3H6, and C2H4 were also detected. The reaction for vinylacetylene removal and C8H8 formation is homogeneous, second order in reactant, and independent of the presence of a large excess of N2 or He. However, C8H8 formation is about half-suppressed by the addition of the free-radical scavengers NO or O2. The rate coefficient for total vinylacetylene removal is 1.7 × 106 exp(?79 ± 13 kJ/mol RT) L/mol · s. The major reaction for C4H4 removal is polymerization. In addition four C8H8 isomers, carbon, and small hydrocarbons are formed. The three major C8H8 isomers are styrene, cyclooctatetraene (COT), and 1,5? dihydropentalene (DHP). The C8H8 compounds are formed by both molecular and free-radical processes in a second-order process with an overall k ? 3 × 108 exp(?122 kJ/mol RT) L/mol · s (average of packed and unpacked cell results). The molecular process occurs with an overall k = 8.5 × 107 exp (?118 kJ/mol RT) L/mol · s. The COT, DHP, and an unidentified isomer (d), are formed exclusively in molecular processes with respective rate coefficients of 4.4 × 104 exp(?77 kJ/mol RT), 1.7 × 105 exp(?89 kJ/mol RT), and 3.1 × 109 exp(? 148 kJ/mol RT) L/mol · s. The styrene is formed both by a direct free-radical process and by isomerization of COT.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号